论文标题

使用极其JPEG压缩图像的数据有效的视觉位置识别

Data Efficient Visual Place Recognition Using Extremely JPEG-Compressed Images

论文作者

Tomita, Mihnea-Alexandru, Ferrarini, Bruno, Milford, Michael, McDonald-Maier, Klaus, Ehsan, Shoaib

论文摘要

Visual Place识别(VPR)是机器人平台从其车载摄像机中正确解释视觉刺激的能力,以确定其当前是否位于先前访问的位置,尽管有不同的观点,照明和外观变化。 JPEG是一种广泛使用的图像压缩标准,能够以图像清晰度为代价显着减少图像的大小。对于同时部署多个机器人平台的应用程序,必须在每个机器人之间远程传输收集的视觉数据。因此,可以采用JPEG压缩来大大减少通信渠道传输的数据量,因为可以证明使用有限的带宽为有限的带宽是一项具有挑战性的任务。但是,尚未研究JPEG压缩对当前VPR技术性能的影响。因此,本文对与VPR相关的方案中的JPEG压缩进行了深入研究。我们在良好的基准数据集上使用一系列已建立的VPR技术,并使用了各种压缩。我们表明,通过引入压缩,VPR性能大大降低,尤其是在较高的压缩范围中。此外,本文演示了如何将微调CNN用作JPEG压缩数据的优化方法,以更加一致地与极度JPEG压缩图像中检测到的图像转换。

Visual Place Recognition (VPR) is the ability of a robotic platform to correctly interpret visual stimuli from its on-board cameras in order to determine whether it is currently located in a previously visited place, despite different viewpoint, illumination and appearance changes. JPEG is a widely used image compression standard that is capable of significantly reducing the size of an image at the cost of image clarity. For applications where several robotic platforms are simultaneously deployed, the visual data gathered must be transmitted remotely between each robot. Hence, JPEG compression can be employed to drastically reduce the amount of data transmitted over a communication channel, as working with limited bandwidth for VPR can be proven to be a challenging task. However, the effects of JPEG compression on the performance of current VPR techniques have not been previously studied. For this reason, this paper presents an in-depth study of JPEG compression in VPR related scenarios. We use a selection of well-established VPR techniques on well-established benchmark datasets with various amounts of compression applied. We show that by introducing compression, the VPR performance is drastically reduced, especially in the higher spectrum of compression. Moreover, this paper demonstrates how fine-tuning a CNN can be utilised as an optimisation method for JPEG compressed data to perform more consistently with the image transformations detected in extremely JPEG compressed images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源