论文标题
基本尺寸$ 5 $的Lemmens-Seidel猜想
The Lemmens-Seidel conjecture for base size $5$
论文作者
论文摘要
2020年,林和YU声称证明了所谓的Lemmens-Seidel猜想,基本尺寸$ 5 $。但是,他们的证明具有差距,实际上,Greaves等人发现的一些e弱线。在2021年,是他们主张之一的反例。在本文中,我们提供了基本尺寸$ 5 $的猜想的证明。另外,我们在否定的问题上回答了Greaves等人的问题。在2021年,是否有一些$ 57 $的equiangular Lines具有公共角度$ \ arccos(1/5)$ 18 $ $ 18 $的$ 276 $ 276 $ Equiangular Lines中,具有共同的角度$ \ arccos $ \ arccos(1/5)$ in Dimension $ 23 $。此外,我们在否定的问题中回答了Cao等人的问题。在2021年,是否存在一套具有共同角度$ \ arccos(1/5)$的强大最大含量线,除了$ 276 $ 276 $ Equiangular Lines具有common Angle $ \ arccos(1/5)$ in Dimension $ 23 $。
In 2020, Lin and Yu claimed to prove the so-called Lemmens-Seidel conjecture for base size $5$. However, their proof has a gap, and in fact, some set of equiangular lines found by Greaves et al. in 2021 is a counterexample to one of their claims. In this paper, we give a proof of the conjecture for base size $5$. Also, we answer in the negative a question of Greaves et al. in 2021 whether some sets of $57$ equiangular lines with common angle $\arccos(1/5)$ in dimension $18$ are contained in a unique set of $276$ equiangular lines with common angle $\arccos(1/5)$ in dimension $23$. In addition, we answer in the negative a question of Cao et al. in 2021 whether a strongly maximal set of equiangular lines with common angle $\arccos(1/5)$ exists except the set of $276$ equiangular lines with common angle $\arccos(1/5)$ in dimension $23$.