论文标题
具有单数电位的Sturm-Liouville操作员的波程
Wave equation for Sturm-Liouville operator with singular potentials
论文作者
论文摘要
该论文用具有不规则(分布)电势的Sturm-Liouville操作员表示波动方程的初始有限值问题。为了获得方程的解决方案,使用了Sturm-Liouville操作员的特征值和特征函数的分离方法和渐近学。考虑方程式的均匀和不均匀案例。接下来,证明了具有单数系数的波动方程非常弱的解决方案解决方案的存在,唯一性和一致性定理。
The paper is denoted to the initial-boundary value problem for the wave equation with the Sturm-Liouville operator with irregular (distributive) potentials. To obtain a solution to the equation, the separation method and asymptotics of the eigenvalues and eigenfunctions of the Sturm-Liouville operator are used. Homogeneous and inhomogeneous cases of the equation are considered. Next, existence, uniqueness, and consistency theorems for a very weak solution of the wave equation with singular coefficients are proved.