论文标题

高光谱图像修复的先验插件

Deep Plug-and-Play Prior for Hyperspectral Image Restoration

论文作者

Lai, Zeqiang, Wei, Kaixuan, Fu, Ying

论文摘要

基于深度学习的高光谱图像(HSI)恢复方法因其出色的性能而广受欢迎,但每当任务更改的细节时,通常都需要昂贵的网络再培训。在本文中,我们建议采用有效的插件方法以统一的方法恢复HSI,该方法可以共同保留基于优化方法的灵活性,并利用深神经网络的强大表示能力。具体而言,我们首先开发了一个新的深HSI DeNoiser,利用了门控复发单元,短期和长期的跳过连接以及增强的噪声水平图,以更好地利用HSIS内丰富的空间光谱信息。因此,这导致在高斯和复杂的噪声设置下,在HSI DeNo的最新性能。然后,在处理各种HSI恢复任务之前,将提议的DeNoiser插入了插件式框架中,作为强大的隐式HSI。通过对HSI超分辨率,压缩感应和介入的广泛实验,我们证明了我们的方法通常可以通过单个模型,而没有任何特定于任务的培训,可以实现卓越的性能,这比每个任务上的最先进的竞争性或什至比最先进的。

Deep-learning-based hyperspectral image (HSI) restoration methods have gained great popularity for their remarkable performance but often demand expensive network retraining whenever the specifics of task changes. In this paper, we propose to restore HSIs in a unified approach with an effective plug-and-play method, which can jointly retain the flexibility of optimization-based methods and utilize the powerful representation capability of deep neural networks. Specifically, we first develop a new deep HSI denoiser leveraging gated recurrent convolution units, short- and long-term skip connections, and an augmented noise level map to better exploit the abundant spatio-spectral information within HSIs. It, therefore, leads to the state-of-the-art performance on HSI denoising under both Gaussian and complex noise settings. Then, the proposed denoiser is inserted into the plug-and-play framework as a powerful implicit HSI prior to tackle various HSI restoration tasks. Through extensive experiments on HSI super-resolution, compressed sensing, and inpainting, we demonstrate that our approach often achieves superior performance, which is competitive with or even better than the state-of-the-art on each task, via a single model without any task-specific training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源