论文标题
需要模糊的超级黑洞生长以解释电离时代的类星体接近区
The need for obscured supermassive black hole growth to explain quasar proximity zones in the epoch of reionization
论文作者
论文摘要
高红移类星体的接近区域是超大黑洞形成的独特探针,但同时解释了接近区域的大小和黑洞质量,事实证明是具有挑战性的。我们研究了一些通常从接近区域大小中推断出五年寿命的假设的鲁棒性。我们表明,很小的接近区域可以用$ f_ \ mathrm {disas} \ sim 0.1 $和短暂的$ t_ \ mathrm {on} \ sim 10^4 $ yr的短时间$ f_ \ mathrm {dution} \ sim 0.1 $ $ f_ \ mathrm {dution} \ sim 0.1 $而变化,很容易解释。我们进一步表明,将其与黑洞质量估计相结合,需要黑洞在其遮盖的阶段继续生长和增生。随之而来的$ \ gtrsim $ 0.7或更高的遮盖分数与低红移测量和黑洞积聚的模型一致。如此短的占空比和长期遮盖的相位也与对较大接近区域的观察结果一致,从而为各种尺寸的接近区提供了一个简单的统一模型。我们的模拟的大型动态范围及其对Lyman $α$森林的校准使我们能够研究大规模电离拓扑的影响以及Quasar的宿主光环质量对接近区的影响。我们发现,不完整的电源会阻碍接近区的生长并使它们较小至30%,但是类星体宿主的光环质量只会弱和间接影响接近区。我们的工作表明,高红移接近区可以是研究类星体变异性和黑洞生长的有效工具。
Proximity zones of high-redshift quasars are unique probes of supermassive black hole formation, but simultaneously explaining proximity zone sizes and black hole masses has proved to be challenging. We study the robustness of some of the assumptions that are usually made to infer quasar lifetimes from proximity zone sizes. We show that small proximity zones can be readily explained by quasars that vary in brightness with a short duty cycle of $f_\mathrm{duty}\sim 0.1$ and short bright periods of $t_\mathrm{on}\sim 10^4$ yr, even for long lifetimes. We further show that reconciling this with black hole mass estimates requires the black hole to continue to grow and accrete during its obscured phase. The consequent obscured fractions of $\gtrsim$ 0.7 or higher are consistent with low-redshift measurements and models of black hole accretion. Such short duty cycles and long obscured phases are also consistent with observations of large proximity zones, thus providing a simple, unified model for proximity zones of all sizes. The large dynamic range of our simulation, and its calibration to the Lyman-$α$ forest, allows us to investigate the influence of the large-scale topology of reionization and the quasar's host halo mass on proximity zones. We find that incomplete reionization can impede the growth of proximity zones and make them smaller up to 30%, but the quasar host halo mass only affects proximity zones weakly and indirectly. Our work suggests that high-redshift proximity zones can be an effective tool to study quasar variability and black hole growth.