论文标题

使用深度学习的心室激发起源的非侵入性定位

Non-invasive Localization of the Ventricular Excitation Origin Without Patient-specific Geometries Using Deep Learning

论文作者

Pilia, Nicolas, Schuler, Steffen, Rees, Maike, Moik, Gerald, Potyagaylo, Danila, Dössel, Olaf, Loewe, Axel

论文摘要

心室心动过速(VT)可能是全球425万人心脏死亡的原因之一。治疗方法是导管消融,以使异常触发区域失活。为了促进和加快消融过程中的定位,我们提出了基于卷积神经网络(CNN)的两种新型定位技术。与现有方法相反,例如使用ECG成像,我们的方法被设计为独立于患者特定的几何形状,直接适用于表面ECG信号,同时还提供了二元透射位置。一种方法输出排名的替代解决方案。可以在通用或患者的几何形状上可视化结果。对CNN进行了仅包含模拟数据的数据集培训,并在模拟和临床测试数据上进行了评估。在模拟数据上,中值测试误差低于3mm。临床数据上的中位定位误差低至32mm。在所有临床病例中,多达82%的透壁位置被正确检测到。使用排名的替代解决方案,在临床数据上,前3个中值误差下降至20mm。这些结果证明了利用CNN来定位激活源的原理证明,而无需固有的患者特定的几何信息。此外,提供多种解决方案可以帮助医生在多个可能的位置中找到实际激活源。通过进一步的优化,这些方法具有加快临床干预措施的高潜力。因此,他们可以降低程序风险并改善VT患者的结果。

Ventricular tachycardia (VT) can be one cause of sudden cardiac death affecting 4.25 million persons per year worldwide. A curative treatment is catheter ablation in order to inactivate the abnormally triggering regions. To facilitate and expedite the localization during the ablation procedure, we present two novel localization techniques based on convolutional neural networks (CNNs). In contrast to existing methods, e.g. using ECG imaging, our approaches were designed to be independent of the patient-specific geometries and directly applicable to surface ECG signals, while also delivering a binary transmural position. One method outputs ranked alternative solutions. Results can be visualized either on a generic or patient geometry. The CNNs were trained on a data set containing only simulated data and evaluated both on simulated and clinical test data. On simulated data, the median test error was below 3mm. The median localization error on the clinical data was as low as 32mm. The transmural position was correctly detected in up to 82% of all clinical cases. Using the ranked alternative solutions, the top-3 median error dropped to 20mm on clinical data. These results demonstrate a proof of principle to utilize CNNs to localize the activation source without the intrinsic need of patient-specific geometrical information. Furthermore, delivering multiple solutions can help the physician to find the real activation source amongst more than one possible locations. With further optimization, these methods have a high potential to speed up clinical interventions. Consequently they could decrease procedural risk and improve VT patients' outcomes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源