论文标题

来自堆理论的多变量独立性多项式的身份

Identities of the multi-variate independence polynomials from heaps theory

论文作者

Kus, Deniz, Singh, Kartik, Venkatesh, R.

论文摘要

我们从堆理论的角度研究并得出多变量独立性多项式的身份。使用反转公式和部分交换代数的组合学,我们展示了如何从保留重量的维护双子群中获得多变量版本的Godsil类型身份以及基本身份。最后,我们获得了一种新的多变量标识,涉及与BenC获得的ChristOffel-Darboux类型身份相似的连接的两部分子图。

We study and derive identities for the multi-variate independence polynomials from the perspective of heaps theory. Using the inversion formula and the combinatorics of partially commutative algebras we show how the multi-variate version of Godsil type identity as well as the fundamental identity can be obtained from weight preserving bijections. Finally, we obtain a new multi-variate identity involving connected bipartite subgraphs similar to the Christoffel-Darboux type identities obtained by Bencs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源