论文标题

基于变压器的花和植物名称中多词表达式的检测

Transformer-based Detection of Multiword Expressions in Flower and Plant Names

论文作者

Premasiri, Damith, Haddad, Amal Haddad, Ranasinghe, Tharindu, Mitkov, Ruslan

论文摘要

多字表达式(MWE)是一系列单词,共同提出了一种含义,该含义不是从其单个单词中得出的。处理MWE的任务在许多自然语言处理(NLP)应用中至关重要,包括机器翻译和术语提取。因此,在不同领域中检测MWE是一个重要的研究主题。在本文中,我们在检测花和植物名称中的MWE的任务中探索了最新的神经变压器。我们在由植物和花朵百科全书创建的数据集上评估了不同的变压器模型。我们从经验上表明,Transformer模型模型优于基于长期记忆(LSTM)的先前神经模型。

Multiword expression (MWE) is a sequence of words which collectively present a meaning which is not derived from its individual words. The task of processing MWEs is crucial in many natural language processing (NLP) applications, including machine translation and terminology extraction. Therefore, detecting MWEs in different domains is an important research topic. In this paper, we explore state-of-the-art neural transformers in the task of detecting MWEs in flower and plant names. We evaluate different transformer models on a dataset created from Encyclopedia of Plants and Flower. We empirically show that transformer models outperform the previous neural models based on long short-term memory (LSTM).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源