论文标题

通过空间先验信息增强过度对齐

Enhanced hyperalignment via spatial prior information

论文作者

Andreella, Angela, Finos, Livio, Lindquist, Martin A

论文摘要

受试者之间的功能比对是功能磁共振成像(fMRI)组级分析的重要假设。但是,即使在与标准的解剖模板保持一致之后,实际上通常会违反它。基于顺序procrustes正交转换的超对准已被提议作为将共享功能信息对准为常见的高维空间的一种方法,从而改善了受试者间的分析。尽管成功,但当前的超对准算法具有许多缺陷,包括解释转换的困难,缺乏程序性的独特性以及执行全脑分析的困难。为了解决这些问题,我们提出了承诺(von Mises-fisher)模型。我们将功能对齐重新调整为统计模型,并对正交参数(von mises-fisher分布)施加了先前的分布。这允许通过在创建共享功能高维空间时惩罚空间远的体素的贡献,从而将解剖信息嵌入估计过程中。重要的是,转换,对齐的图像和相关结果都是唯一的。此外,提出的方法允许有效的全脑功能比对。与标准的超同时算法相比,在四项fMRI研究中的模拟和对数据的应用中,从受试者间的准确性和可解释性方面提高了受试者间分类。

Functional alignment between subjects is an important assumption of functional magnetic resonance imaging (fMRI) group-level analysis. However, it is often violated in practice, even after alignment to a standard anatomical template. Hyperalignment, based on sequential Procrustes orthogonal transformations, has been proposed as a method of aligning shared functional information into a common high-dimensional space and thereby improving inter-subject analysis. Though successful, current hyperalignment algorithms have a number of shortcomings, including difficulties interpreting the transformations, a lack of uniqueness of the procedure, and difficulties performing whole-brain analysis. To resolve these issues, we propose the ProMises (Procrustes von Mises-Fisher) model. We reformulate functional alignment as a statistical model and impose a prior distribution on the orthogonal parameters (the von Mises-Fisher distribution). This allows for the embedding of anatomical information into the estimation procedure by penalizing the contribution of spatially distant voxels when creating the shared functional high-dimensional space. Importantly, the transformations, aligned images, and related results are all unique. In addition, the proposed method allows for efficient whole-brain functional alignment. In simulations and application to data from four fMRI studies we find that ProMises improves inter-subject classification in terms of between-subject accuracy and interpretability compared to standard hyperalignment algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源