论文标题

简单多面体的边缘连通性

Edge connectivity of simplicial polytopes

论文作者

Pilaud, Vincent, Pineda-Villavicencio, Guillermo, Ugon, Julien

论文摘要

我们表明,尺寸$ d \ ge 3 $的简单多元化的图形没有少于$ d(d+1)/2 $边缘的非平凡的最小边缘切割,因此该图为$ \ min \ min \ {δ,d(d+1)/2 \} $ - 边缘 - $δ$ DENOTES the最sumimim the Mimumimum the Mimum Mimumimum the Mimum Mimum Mimum Mimum Mimum Mimumimum the Mimum Mimum Mimum Mimum Mimum Mimum Mimum Mimum Mimum Mimum Mimum Miumie。当$ d = 3 $时,这意味着在平面三角剖分中切下的每个最小边缘都是微不足道的。当$ d \ ge 4 $时,我们构建了一个简单的$ d $ - polytope,其图具有非平凡的最小值基数$ d(d+1)/2 $,证明上述结果是最好的。

We show that the graph of a simplicial polytope of dimension $d \ge 3$ has no nontrivial minimum edge cut with fewer than $d(d+1)/2$ edges, hence the graph is $\min\{δ, d(d+1)/2\}$-edge-connected where $δ$ denotes the minimum degree. When $d = 3$, this implies that every minimum edge cut in a plane triangulation is trivial. When $d \ge 4$, we construct a simplicial $d$-polytope whose graph has a nontrivial minimum edge cut of cardinality $d(d+1)/2$, proving that the aforementioned result is best possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源