论文标题
简短证明$ W(3,k)\ ge(1-o(1))k^2 $
A short proof that $w(3,k) \ge (1-o(1))k^2$
论文作者
论文摘要
在这里,我们提供了一个简短的证明,即两色van der waerden number $ w(3,k)$从下面限制为$(1-o(1))k^2 $。先前的工作已经表明,$ w(3,k)$的超多个物质下限持有。但是,我们认为由于我们的技术,我们的结果仍然令人感兴趣。
Here we present a short proof that the two-color van der Waerden number $w(3,k)$ is bounded from below by $(1-o(1))k^2$. Previous work has already shown that a superpolynomial lower bound holds for $w(3,k)$. However, we believe our result is still is of interest due to our techniques.