论文标题

一种用于解释具有决策规则的分类数据集的嵌套遗传算法

A Nested Genetic Algorithm for Explaining Classification Data Sets with Decision Rules

论文作者

Matt, Paul-Amaury, Ziegler, Rosina, Brajovic, Danilo, Roth, Marco, Huber, Marco F.

论文摘要

本文我们的目标是自动提取一组决策规则(规则集),该规则可以最好地解释分类数据集。首先,从对数据集训练的一组决策树中提取了一大批决策规则。规则集应简洁,准确,具有最大覆盖范围和最小数量的不一致。该问题可以正式化为已知是NP hard的加权预算最大覆盖问题的修改版本。为了有效地解决组合优化问题,我们引入了一种嵌套的遗传算法,然后将其用于为十个公共数据集提供解释。

Our goal in this paper is to automatically extract a set of decision rules (rule set) that best explains a classification data set. First, a large set of decision rules is extracted from a set of decision trees trained on the data set. The rule set should be concise, accurate, have a maximum coverage and minimum number of inconsistencies. This problem can be formalized as a modified version of the weighted budgeted maximum coverage problem, known to be NP-hard. To solve the combinatorial optimization problem efficiently, we introduce a nested genetic algorithm which we then use to derive explanations for ten public data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源