论文标题
在小各向异性和修饰的重力下,Schönberg-Chandrasekhar极限
The Schönberg-Chandrasekhar limit in presence of small anisotropy and modified gravity
论文作者
论文摘要
schönberg-chandrasekhar限制在$ 1.4 \ lyseSim m/m _ {\ odot} \ Lessim 6 $ $ 1.4 \ lyseSim m/m _ $ 6 $的主要范围内的主序列演变中,一旦中央氢气被耗尽,恒星核可以承受的最大压力可以承受最大的压力。它通常表示为$ 1/α$的二次函数,$α$是核心平均分子量与信封的平均分子量之比。在这里,我们在可能会改变恒星内部压力平衡方程以及存在小恒星压力各向异性的情况下,重新审视这种限制,这可能是由于几种物理现象而引起的。使用数值分析,我们为限制得出三个依赖的主公式,并讨论各种物理后果。作为副产品,在我们的公式的极限情况下,我们发现在标准的牛顿框架中,Schönberg-chandrasekhar极限最好由多项式而不是二次的多项式拟合,而不是二次,以最低的序列达到$ 1/α$。
The Schönberg-Chandrasekhar limit in post main sequence evolution for stars of masses in the range $1.4\lesssim M/M_{\odot}\lesssim 6$ gives the maximum pressure that the stellar core can withstand, once the central hydrogen is exhausted. It is usually expressed as a quadratic function of $1/α$, with $α$ being the ratio of the mean molecular weight of the core to that of the envelope. Here, we revisit this limit in scenarios where the pressure balance equation in the stellar interior may be modified, and in the presence of small stellar pressure anisotropy, that might arise due to several physical phenomena. Using numerical analysis, we derive a three parameter dependent master formula for the limit, and discuss various physical consequences. As a byproduct, in a limiting case of our formula, we find that in the standard Newtonian framework, the Schönberg-Chandrasekhar limit is best fitted by a polynomial that is linear, rather than quadratic, to lowest order in $1/α$.