论文标题

用于路径依赖性异质材料的物理复发性神经网络:将本构模型嵌入数据驱动的替代物中

Physically recurrent neural networks for path-dependent heterogeneous materials: embedding constitutive models in a data-driven surrogate

论文作者

Maia, M. A., Rocha, I. B. C. M., Kerfriden, P., van der Meer, F. P.

论文摘要

在加速数值模拟的需求的驱动下,机器学习技术的使用在计算固体力学领域正在迅速增长。由于通常与IT相关的非常高的计算成本以及涉及的相似微机械分析数量的高度,他们的应用在并发的多尺度有限元分析(Fe $^2 $)中尤其有利。为了解决这个问题,使用替代模型近似微观行为并加速模拟是一种有希望且日益流行的策略。但是,与数据驱动的性质有关的一些挑战损害了材料建模中替代模型的可靠性。这项工作中探讨的替代方法是通过使用全阶微型模型中使用的实际材料模型来引入非线性性,将一些基于物理的经典组成模型的一些基于物理学的知识重新引入神经网络。因此,自然会出现路径依赖性,因为该层中的每个材料模型都跟踪其自身的内部变量。对于数值示例,具有弹性纤维和弹性型矩阵材料的复合代表性元件被用作微观模型。该网络在一系列具有挑战性的场景中进行了测试,其性能与最新的经常性神经网络(RNN)相比。新型框架的一个显着结果是能够自然预测卸载/重新加载行为而不在训练中看到它,这与流行但渴望数据的模型(如RNN)形成了鲜明的对比。最后,提出的网络应用于fe $^2 $示例,以评估其在非线性有限元分析中应用的鲁棒性。

Driven by the need to accelerate numerical simulations, the use of machine learning techniques is rapidly growing in the field of computational solid mechanics. Their application is especially advantageous in concurrent multiscale finite element analysis (FE$^2$) due to the exceedingly high computational costs often associated with it and the high number of similar micromechanical analyses involved. To tackle the issue, using surrogate models to approximate the microscopic behavior and accelerate the simulations is a promising and increasingly popular strategy. However, several challenges related to their data-driven nature compromise the reliability of surrogate models in material modeling. The alternative explored in this work is to reintroduce some of the physics-based knowledge of classical constitutive modeling into a neural network by employing the actual material models used in the full-order micromodel to introduce non-linearity. Thus, path-dependency arises naturally since every material model in the layer keeps track of its own internal variables. For the numerical examples, a composite Representative Volume Element with elastic fibers and elasto-plastic matrix material is used as the microscopic model. The network is tested in a series of challenging scenarios and its performance is compared to that of a state-of-the-art Recurrent Neural Network (RNN). A remarkable outcome of the novel framework is the ability to naturally predict unloading/reloading behavior without ever seeing it during training, a stark contrast with popular but data-hungry models such as RNNs. Finally, the proposed network is applied to FE$^2$ examples to assess its robustness for application in nonlinear finite element analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源