论文标题

确定有限化学势状态的状态晶格QCD方程的新方法

A new way of determining the Lattice QCD equation of state at a finite chemical potential

论文作者

Mitra, Sabarnya, Hegde, Prasad, Schmidt, Christian

论文摘要

在有限的重子化学势$μ_b$上,热力学可观察物的泰勒膨胀是一种经常使用的方法,可以绕过lattice QCD的众所周知的符号问题。由于相关的难度和精度的局限性在计算这些高阶泰勒系数时,必须寻找各种可以减轻计算成本的重新召集方案,除了提供不同热力学可观察力的值得信赖的估计。最近,在Phys提出了一种指数恢复第一个$ n $电荷密度相关功能$ d_1,\ dots,d_n $对泰勒系列对$μ_b$中所有订单的贡献。莱特牧师。 128,2,022001(2022)。由于相关函数$ d_n $是使用来自不同随机量源的估计来随机计算的,因此重新召集公式会受到偏置估计的影响。这些估计值可能会变得非常激烈,并且可能会从根本上误导$ n $和$μ$的大值的计算,也可能是对高阶$μ$ $ $自由能导数(特别是在较低温度下)的可观察结果。在这项工作中,我们提出了一个累积的扩展程序,该程序允许以$μ$的不同订单进行调查和调节这些偏见的估计。我们发现,累积扩展中的无偏估计值可以真正捕获高阶相关函数的真正高阶随机波动,这被指数重新召开的公式所抑制。最后,我们发现指数重新召集的一种公正的形式主义,当在系列中扩展时,可以将Taylor系列的重现至$μ$中的所需功率。我们还能够重新获得重新加权因素以及分区功能的许多其他重要属性的知识,这些函数通过实施累积扩展方案而完全损失了。

The Taylor expansion of thermodynamic observables at a finite baryon chemical potential $μ_B$ is an oft-used method to circumvent the well-known sign problem of Lattice QCD. Owing to the associated difficulty and limitations of precision in calculating these high-ordered Taylor coefficients, it becomes essential to look for various resummation schemes which can mitigate the computational cost, besides providing trustworthy estimates of different thermodynamic observables. Recently, a way to exponentially resum the contribution of the first $N$ charge density correlation functions $D_1,\dots,D_N$ to the Taylor series to all orders in $μ_B$ was proposed in Phys. Rev. Lett. 128, 2, 022001 (2022). Since the correlation functions $D_n$ are calculated stochastically using estimates from different random volume sources, the resummation formulation gets affected by the biased estimates. These estimates can become very drastic and can radically misdirect the calculations for large values of $N$ and $μ$ and also for observables which are higher order $μ$ derivatives of free energy, specially at lower temperatures. In this work, we present a cumulant expansion procedure that allows to investigate and regulate these biased estimates at different orders in $μ$. We find that the unbiased estimates in the cumulant expansion can truly capture the genuine higher-order stochastic fluctuations of the higher order correlation functions, which got suppressed by the exponential resummation formulation. Finally, we discover an unbiased formalism of the exponential resummation, which when expanded in a series, can exactly reproduce the Taylor series upto a desired power in $μ$. We are also able to regain the knowledge of reweighting factor and many other important properties of the partition function, which got entirely lost through the implementation of cumulant expansion scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源