论文标题
部分可观测时空混沌系统的无模型预测
A Foreground Model Independent Bayesian CMB Temperature and Polarization Signal Reconstruction and Cosmological Parameter Estimation over Large Angular Scales
论文作者
论文摘要
最近的CMB观察结果导致非常精确的观察数据。强大而可靠的CMB重建技术可以导致对宇宙学参数的有效估计。我们使用模拟温度和极化观察来证明我们方法的性能有限,有限的未来生成棱镜卫星任务。我们通过使用GIBBS采样技术实施CMB反协调加权内线性组合(ILC)来生成联合分布的样品。我们使用Python Sky Model(PYSM),D4F1S1来生成逼真的前景模板。同步加速器的发射通过空间变化的光谱指数参数化,而热灰尘发射被描述为两组分尘模型。我们利用整个后验分布中的样品估计了CMB信号的边缘化密度和理论角功率谱。最合适的清洁CMB图和相应的角功率谱与CMB实现和天空角功率谱是一致的,这意味着有效的前景最小化的重建。通过使用Blackwell-Rao估计器估计的可能性函数用于估计宇宙学参数。我们的方法可以估计所选前景模型和仪器噪声水平的标量比$ r \ ge 0.0075 $。我们当前的工作表明了一条分析管道从CMB信号及其角功率谱的可靠估计开始,再到使用前景模型独立的Gibbs-ILC方法的宇宙参数估计的情况。
Recent CMB observations have resulted in very precise observational data. A robust and reliable CMB reconstruction technique can lead to efficient estimation of the cosmological parameters. We demonstrate the performance of our methodology using simulated temperature and polarization observations using cosmic variance limited future generation PRISM satellite mission. We generate samples from the joint distribution by implementing the CMB inverse covariance weighted internal-linear-combination (ILC) with the Gibbs sampling technique. We use the Python Sky Model (PySM), d4f1s1 to generate the realistic foreground templates. The synchrotron emission is parametrized by a spatially varying spectral index, whereas the thermal dust emission is described as a two-component dust model. We estimate the marginalized densities of CMB signal and theoretical angular power spectrum utilizing the samples from the entire posterior distribution. The best-fit cleaned CMB map and the corresponding angular power spectrum are consistent with the CMB realization and the sky angular power spectrum, implying an efficient foreground minimized reconstruction. The likelihood function estimated by making use of the Blackwell-Rao estimator is used for the estimation of the cosmological parameters. Our methodology can estimate the tensor to scalar ratio $r\ge 0.0075$ for the chosen foreground models and the instrumental noise levels. Our current work demonstrates an analysis pipeline starting from the reliable estimation of CMB signal and its angular power spectrum to the case of cosmological parameter estimation using the foreground model independent Gibbs-ILC method.