论文标题

用于估计观测环境中因果效应的框架:比较混杂器调整和仪器变量

Frameworks for Estimating Causal Effects in Observational Settings: Comparing Confounder Adjustment and Instrumental Variables

论文作者

Zawadzki, Roy S., Grill, Joshua D., Gillen, Daniel L.

论文摘要

为了估计因果关系,在健康环境中进行观察性研究的分析师利用几种策略来减轻因指示混淆而导致的偏见。这些目的有两种广泛的方法:使用混杂因素和仪器变量(IVS)。由于这种方法在很大程度上以不可测试的假设为特征,因此分析师必须在不确定的范式下运行这些方法,即这些方法将不完美。在本教程中,我们在可能违反假设时,在两种方法中估算了一系列一般原则和启发式方法,以估算两种方法。这至关重要的是,将观察性研究的过程重新构建为假设的潜在情况,在这种情况下,一种方法的估计比另一个方法不一致。尽管我们对方法论的大多数讨论都围绕线性设置为中心,但我们涉及非线性设置中的复杂性以及灵活的程序,例如基于目标最小损耗的估计(TMLE)和双机器学习(DML)。为了证明我们的原则的应用,我们研究了在标签外的多奈哌齐使用对轻度认知障碍(MCI)的使用。我们在分析中以及类似的观察性研究和临床试验中比较了传统和灵活的混杂因素和IV方法的结果和对比结果。

To estimate causal effects, analysts performing observational studies in health settings utilize several strategies to mitigate bias due to confounding by indication. There are two broad classes of approaches for these purposes: use of confounders and instrumental variables (IVs). Because such approaches are largely characterized by untestable assumptions, analysts must operate under an indefinite paradigm that these methods will work imperfectly. In this tutorial, we formalize a set of general principles and heuristics for estimating causal effects in the two approaches when the assumptions are potentially violated. This crucially requires reframing the process of observational studies as hypothesizing potential scenarios where the estimates from one approach are less inconsistent than the other. While most of our discussion of methodology centers around the linear setting, we touch upon complexities in non-linear settings and flexible procedures such as target minimum loss-based estimation (TMLE) and double machine learning (DML). To demonstrate the application of our principles, we investigate the use of donepezil off-label for mild cognitive impairment (MCI). We compare and contrast results from confounder and IV methods, traditional and flexible, within our analysis and to a similar observational study and clinical trial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源