论文标题
使用深度学习的城市降水降级:美国德克萨斯州奥斯汀的智能城市应用
Urban precipitation downscaling using deep learning: a smart city application over Austin, Texas, USA
论文作者
论文摘要
Urban缩小范围是将知识从更庄重的气候信息转移到城市规模评估的链接。这些高分辨率评估需要过去数据和未来预测的多年气候,使用传统的数值天气预测模型生成复杂且计算上的昂贵。在过去的十年中,美国德克萨斯州奥斯汀市的增长巨大。对未来的系统计划需要良好的分辨率城市规模数据集。在这项研究中,我们证明了一种新颖的方法,该方法使用深度学习来产生通用操作员来执行城市缩减。该算法在美国德克萨斯州奥斯汀市使用了迭代超分辨率卷积神经网络(迭代SRCNN)。我们显示了从基于粗分辨率(10 km)卫星产品(JAXA GSMAP)的高分辨率网格降水产物(300 m)的发展。高分辨率的降水数据集提供了对过去沉重至低降水事件的空间分布的见解。该算法在平均峰信号到噪声比率和共同信息方面显示出改善,以生成相对于立方插值基线的尺寸300 m x 300 m的高分辨率网格产物。我们的结果对开发高分辨率栅格式的城市数据集具有影响,以及针对其他城市和其他气候变量的智能城市的未来计划。
Urban downscaling is a link to transfer the knowledge from coarser climate information to city scale assessments. These high-resolution assessments need multiyear climatology of past data and future projections, which are complex and computationally expensive to generate using traditional numerical weather prediction models. The city of Austin, Texas, USA has seen tremendous growth in the past decade. Systematic planning for the future requires the availability of fine resolution city-scale datasets. In this study, we demonstrate a novel approach generating a general purpose operator using deep learning to perform urban downscaling. The algorithm employs an iterative super-resolution convolutional neural network (Iterative SRCNN) over the city of Austin, Texas, USA. We show the development of a high-resolution gridded precipitation product (300 m) from a coarse (10 km) satellite-based product (JAXA GsMAP). High resolution gridded datasets of precipitation offer insights into the spatial distribution of heavy to low precipitation events in the past. The algorithm shows improvement in the mean peak-signal-to-noise-ratio and mutual information to generate high resolution gridded product of size 300 m X 300 m relative to the cubic interpolation baseline. Our results have implications for developing high-resolution gridded-precipitation urban datasets and the future planning of smart cities for other cities and other climatic variables.