论文标题
分析四点灯光般的形式和无编织多边形的OPE
Analytic Four-Point Lightlike Form Factors and OPE of Null-Wrapped Polygons
论文作者
论文摘要
我们首次获得平面$ {\ cal n} = 4 $ sym的分析性两环MHV灯光表单元素,其中操作员携带的动量$ q $是无质量的。值得注意的是,我们发现使用Master-Bootstrap方法的红外差异和共线限制可以独特地限制两循环结果。此外,其余函数仅取决于三个双共形不变变量,这可以从在$ q $的轻度限制中产生的外形的隐藏的双形状对称性来理解。其余的符号字母仅包含九个字母,这些字母是在二面体组$ d_4 $的动作下关闭的。基于定期威尔逊线(无编码多边形)的双重描述,我们还考虑了针对灯光般的形式的新OPE图片,并引入了与三点灯光般的外形相对应的新型外形偏移。使用最多两个循环的表单因素结果,我们使用OPE图片进行了一些全环预测。
We obtain for the first time the analytic two-loop four-point MHV lightlike form factor of the stress-tensor supermultiplet in planar ${\cal N}=4$ SYM where the momentum $q$ carried by the operator is taken to be massless. Remarkably, we find that the two-loop result can be constrained uniquely by the infrared divergences and the collinear limits using the master-bootstrap method. Moreover, the remainder function depends only on three dual conformal invariant variables, which can be understood from a hidden dual conformal symmetry of the form factor arising in the lightlike limit of $q$. The symbol alphabet of the remainder contains only nine letters, which are closed under the action of the dihedral group $D_4$. Based on the dual description in terms of periodic Wilson lines (null-wrapped polygons), we also consider a new OPE picture for the lightlike form factors and introduce a new form factor transition that corresponds to the three-point lightlike form factor. With the form factor results up to two loops, we make some all-loop predictions using the OPE picture.