论文标题

会有建筑吗?根据异质时空数据预测道路构造

Will there be a construction? Predicting road constructions based on heterogeneous spatiotemporal data

论文作者

Monsefi, Amin Karimi, Moosavi, Sobhan, Ramnath, Rajiv

论文摘要

道路建设项目维护运输基础设施。这些项目的范围从短期(例如,重新铺面或固定坑洼)到长期(例如,添加肩膀或建造桥梁)。传统上,确定下一个建设项目是什么以及安排什么何时进行安排,这是通过人类使用特殊设备的检查来完成的。这种方法是昂贵且难以扩展的。另一种选择是使用计算方法来整合和分析过去和现在的时空数据以预测未来道路构建的位置和时间。本文报告了这种方法,该方法使用基于深神经网络的模型来预测未来的结构。我们的模型在由构造,天气,地图和道路网络数据组成的异质数据集上应用卷积和经常性组件。我们还报告了如何通过构建一个名为“美国建设”的大型数据集来解决我们如何解决缺乏足够的公开数据,其中包括620万个道路构造案例,这是通过各种时空属性和道路网络属性和道路网络功能增强的,在2016年和2021年之间的运用范围内,我们在社会上的运用范围(US)的运用良好,我们在2016年和2021年之间的运用范围内收集了各种运用,我们在我们的几个范围内进行了启用。构造 - 平均F1得分为0.85,精度为82.2% - 表现优于基准。此外,我们展示了我们的培训管道如何解决数据的空间稀疏性。

Road construction projects maintain transportation infrastructures. These projects range from the short-term (e.g., resurfacing or fixing potholes) to the long-term (e.g., adding a shoulder or building a bridge). Deciding what the next construction project is and when it is to be scheduled is traditionally done through inspection by humans using special equipment. This approach is costly and difficult to scale. An alternative is the use of computational approaches that integrate and analyze multiple types of past and present spatiotemporal data to predict location and time of future road constructions. This paper reports on such an approach, one that uses a deep-neural-network-based model to predict future constructions. Our model applies both convolutional and recurrent components on a heterogeneous dataset consisting of construction, weather, map and road-network data. We also report on how we addressed the lack of adequate publicly available data - by building a large scale dataset named "US-Constructions", that includes 6.2 million cases of road constructions augmented by a variety of spatiotemporal attributes and road-network features, collected in the contiguous United States (US) between 2016 and 2021. Using extensive experiments on several major cities in the US, we show the applicability of our work in accurately predicting future constructions - an average f1-score of 0.85 and accuracy 82.2% - that outperform baselines. Additionally, we show how our training pipeline addresses spatial sparsity of data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源