论文标题
晶格的K3表面,签名和异构体的自态
Automorphisms of K3 surfaces, signatures, and isometries of lattices
论文作者
论文摘要
4,6,8,12,14或16度的每个塞勒姆数量是非标记K3表面的自动形态的动力学程度。我们定义了自动形态的签名概念,并使用它为塞勒姆(Salem)数量10和18的塞勒姆(Salem)数量提供了必要和充分的条件,以实现为这种自动形态的动态程度。本文的第一部分包含晶格等异分析的结果。
Every Salem numbers of degree 4,6,8,12,14 or 16 is the dynamical degree of an automorphism of a non-projective K3 surface. We define a notion of signature of an automorphism, and use it to give a necessary and sufficient condition for Salem numbers of degree 10 and 18 to be realized as the dynamical degree of such an automorphism. The first part of the paper contains results on isometries of lattices.