论文标题

Hausdorff力矩问题的棕色和Tutte组合数:精确解决方案

Hausdorff moment problem for combinatorial numbers of Brown and Tutte: exact solution

论文作者

Penson, K. A., Górska, K., Horzela, A., Duchamp, G. H. E.

论文摘要

我们研究了W. G. Brown(1964)和W. T. Tutte(1980)引入的组合序列$ a(m,n)$出现在凸多面体的枚举中。他们的公式为$$ a(m,n)= \ frac {2(2m+3)!} {(m+2)! m!} \,\ frac {(4n+2m+1)!} {n! (3n + 2m + 3)!} $$,带有$ n,m = 0,1,2,\ ldots $,我们将其视为Hausdorff Moments,其中$ m $是一个参数,$ n $列举了时刻。我们精确地解决了相应的Hausdorff瞬间问题:$ a(m,n)= \ int_ {0}^{r} x^{n} w_ {m}(x)d x $在天然支持$(0,r)$,$ r = 4^{4} {4} {4}/3^{3} $上,使用inverse MellIn of verseMellIn tronsement。我们明确地提供重量功能$ w_ {m}(x)$,就meijer g-功能$ g_ {4,4}^{4,0} $,或等效地,广义的超细几点函数$ {_ {_ {_ {3} f_ {2} f_ {2}} $(for_ {2}} $} (对于$ m \ geq 2 $)。对于$ m = 0,1 $,我们证明$ w_ {m}(x)$是非负且可正常化的,因此它们是概率分布。对于$ m \ geq 2 $,$ w_ {m}(x)$是签名的功能在支撑的四肢上消失。通过完全根据Meijer g表示,我们揭示了一个整体关系,该关系直接基于$ a(m,n)$的普通生成函数直接提供$ w_m(x)$作为输入。所有结果均以分析和图形为单位进行研究。

We investigate the combinatorial sequences $A(M, n)$ introduced by W. G. Brown (1964) and W. T. Tutte (1980) appearing in enumeration of convex polyhedra. Their formula is $$A(M, n) = \frac{2 (2M+3)!}{(M+2)! M!}\,\frac{(4n+2M+1)!}{n! (3n + 2M + 3)!} $$ with $n, M =0, 1, 2, \ldots$, and we conceive it as Hausdorff moments, where $M$ is a parameter and $n$ enumerates the moments. We solve exactly the corresponding Hausdorff moment problem: $A(M, n) = \int_{0}^{R} x^{n} W_{M}(x) d x$ on the natural support $(0, R)$, $R = 4^{4}/3^{3}$, using the method of inverse Mellin transform. We provide explicitly the weight functions $W_{M}(x)$ in terms of the Meijer G-functions $G_{4, 4}^{4, 0}$, or equivalently, the generalized hypergeometric functions ${_{3}F_{2}}$ (for $M=0, 1$) and ${_{4}F_{3}}$ (for $M \geq 2$). For $M = 0, 1$, we prove that $W_{M}(x)$ are non-negative and normalizable, thus they are probability distributions. For $M \geq 2$, $W_{M}(x)$ are signed functions vanishing on the extremities of the support. By rephrasing this problem entirely in terms of Meijer G representations we reveal an integral relation which directly furnishes $W_M(x)$ based on ordinary generating function of $A(M, n)$ as an input. All the results are studied analytically as well as graphically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源