论文标题

多元功能数据的图形约束分析

Graph-constrained Analysis for Multivariate Functional Data

论文作者

Dey, Debangan, Banerjee, Sudipto, Lindquist, Martin, Datta, Abhirup

论文摘要

用于分析多元功能数据的功能性高斯图形模型(GGM)通常估计一个未知的图形模型,代表功能变量之间的条件关系。但是,在多元功能数据的许多应用中,该图是已知的,并且现有的功能GGM方法无法保留给定的图形约束。在此手稿中,我们演示了如何进行多元功能分析,以完全符合给定的可变性图。我们首先显示了部分可分开的功能性GGM与图形高斯过程(GP)之间的等效性,该过程最初是针对在给定图形模型中保留条件独立关系的多变量空间数据的最佳协方差函数。理论连接有助于设计一种新算法,该算法利用Dempster的协方差选择来计算图形约束下多变量功能数据的协方差函数的最大似然估计。我们还表明,实践中使用的功能GGM基础扩展的有限项截断等于低级别的图形GP,该GP已知,该GP已知是超平滑的边际分布。为了解决此问题,我们扩展了算法以更好地保留边际分布,同时仍尊重图形并保留计算可扩展性。从本手稿中提出的新结果中获得的见解将帮助从业者更好地了解这些图形模型之间的关系,并确定其特定多元数据分析任务的适当方法。使用经验实验和使用大脑区域之间的连接图对神经成像数据进行功能建模的应用来说明所提出的算法的好处。

Functional Gaussian graphical models (GGM) used for analyzing multivariate functional data customarily estimate an unknown graphical model representing the conditional relationships between the functional variables. However, in many applications of multivariate functional data, the graph is known and existing functional GGM methods cannot preserve a given graphical constraint. In this manuscript, we demonstrate how to conduct multivariate functional analysis that exactly conforms to a given inter-variable graph. We first show the equivalence between partially separable functional GGM and graphical Gaussian processes (GP), proposed originally for constructing optimal covariance functions for multivariate spatial data that retain the conditional independence relations in a given graphical model. The theoretical connection help design a new algorithm that leverages Dempster's covariance selection to calculate the maximum likelihood estimate of the covariance function for multivariate functional data under graphical constraints. We also show that the finite term truncation of functional GGM basis expansion used in practice is equivalent to a low-rank graphical GP, which is known to oversmooth marginal distributions. To remedy this, we extend our algorithm to better preserve marginal distributions while still respecting the graph and retaining computational scalability. The insights obtained from the new results presented in this manuscript will help practitioners better understand the relationship between these graphical models and in deciding on the appropriate method for their specific multivariate data analysis task. The benefits of the proposed algorithms are illustrated using empirical experiments and an application to functional modeling of neuroimaging data using the connectivity graph among regions of the brain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源