论文标题
部分可观测时空混沌系统的无模型预测
Phenomenological implications of the new Littlest Higgs model with T-parity
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We investigate the parameter space of the new Littlest Higgs model with T-parity (NLHT) recently introduced to cure some pathologies of the original LHT. The model requires extra fermion content and additional pseudo-Goldstone bosons. While the heavy top quark sector is similar, there are both T-odd and T-even heavy quarks and leptons with masses proportional to just two sets of Yukawa matrices in flavor space, one more than in the LHT. The new scalars are a singlet and real triplet, T-odd, with masses controlled by gauge and Yukawa couplings, independent of the spontaneous symmetry breaking scale $f$, and hence potentially light. Imposing that no mass exceeds the cutoff scale, applying current lower bounds on vector-like quarks and assuming a simplified model with mass degenerate heavy fermions compatible with the heavy photon as dark matter constituent, we find that $f$ gets constrained within the interval between 2 and 3 TeV, the common Yukawa coupling of heavy leptons gets fixed and the Yukawa coupling of heavy quarks becomes greatly correlated to the top quark Yukawa couplings. The particle spectrum is then bounded from below and above, with the (lightest) heavy photon at about 0.5 TeV, not far from the heavy leptons, the new scalars below 1 TeV, the usual complex scalar triplet close to the heavy weak bosons at about 1.5 to 2.5 TeV, and the heavy quarks and top quark partners between 2 and 5 TeV. The new scalars decay predominantly to a standard and a T-odd lepton and have a width comparable to that of the Higgs.