论文标题

基于高斯的Quasiparticle自洽的$ GW $用于周期性系统

Gaussian-Based Quasiparticle Self-Consistent $GW$ for Periodic Systems

论文作者

Lei, Jincheng, Zhu, Tianyu

论文摘要

我们为基于Crystalline Gaussian基集的定期系统提供了一个Quasiparticle $ GW $(QSGW)实现。我们的QSGW方法基于Brillouin区采样的全频分析延续GW方案,并采用高斯密度拟合技术。我们将QSGW实施基准在一组弱关联的半导体和绝缘子上,以及密切相关的过渡金属氧化物,包括MNO,FEO,COO和NIO。使用有限尺寸校正的QSGW评估带隙,频带结构和状态密度。我们发现,尽管QSGW系统地高估了测试的半导体和过渡金属氧化物的带隙,但它完全消除了对密度功能选择的依赖性,并且比$ G_0W_0 $ $ G_0W_0 $在各种固体中提供了更一致的光谱性能。这项工作为利用QSGW从头算量嵌入固体铺平了道路。

We present a quasiparticle self-consistent $GW$ (QSGW) implementation for periodic systems based on crystalline Gaussian basis sets. Our QSGW approach is based on a full-frequency analytic continuation GW scheme with Brillouin zone sampling and employs the Gaussian density fitting technique. We benchmark our QSGW implementation on a set of weakly-correlated semiconductors and insulators as well as strongly correlated transition metal oxides including MnO, FeO, CoO, and NiO. Band gap, band structure, and density of states are evaluated using finite size corrected QSGW. We find that although QSGW systematically overestimates band gaps of tested semiconductors and transition metal oxides, it completely removes the dependence on the choice of density functionals and provides more consistent prediction of spectral properties than $G_0W_0$ across a wide range of solids. This work paves the way for utilizing QSGW in ab initio quantum embedding for solids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源