论文标题
高维数值集成的通用维度截断误差分析:lognormaling设置及以后
Generalized dimension truncation error analysis for high-dimensional numerical integration: lognormal setting and beyond
论文作者
论文摘要
在许多不确定性定量研究中,已经考虑了具有不确定或随机输入的部分微分方程(PDE)。在正向不确定性量化中,人们有兴趣分析PDE的随机响应受输入不确定性的影响,这通常涉及通过一系列随机变量求解PDE输出的高维积分。在实用计算中,通常需要以多种方式离散问题:近似使用有限维的随机字段,使用诸如Quasi-Monte-Monte-Monte-Monte-Monte-Monte-Monte-Monte Carlo Carlo方法的高维元素和近似高维置的PDE,使用有限维的随机场,PDE进行空间离散。在本文中,我们关注输入随机字段的尺寸截断引起的错误。我们展示了如何使用Taylor系列来得出广泛的问题的理论维度截断率,并且我们提供了一个简单的条件清单,参数数学模型需要满足该条件,以使我们的维截断误差绑定。我们方法的一些新特征包括我们的结果适用于非携带参数操作员方程,尺寸截断的符合符合的有限元离散的参数PDE的解决方案,甚至具有光滑的非线性利息的PDE解决方案的组成。作为我们方法的特定应用,我们得出了带有对数正态参数化扩散系数的椭圆PDE的改进的维截断误差。数值示例支持我们的理论发现。
Partial differential equations (PDEs) with uncertain or random inputs have been considered in many studies of uncertainty quantification. In forward uncertainty quantification, one is interested in analyzing the stochastic response of the PDE subject to input uncertainty, which usually involves solving high-dimensional integrals of the PDE output over a sequence of stochastic variables. In practical computations, one typically needs to discretize the problem in several ways: approximating an infinite-dimensional input random field with a finite-dimensional random field, spatial discretization of the PDE using, e.g., finite elements, and approximating high-dimensional integrals using cubatures such as quasi-Monte Carlo methods. In this paper, we focus on the error resulting from dimension truncation of an input random field. We show how Taylor series can be used to derive theoretical dimension truncation rates for a wide class of problems and we provide a simple checklist of conditions that a parametric mathematical model needs to satisfy in order for our dimension truncation error bound to hold. Some of the novel features of our approach include that our results are applicable to non-affine parametric operator equations, dimensionally-truncated conforming finite element discretized solutions of parametric PDEs, and even compositions of PDE solutions with smooth nonlinear quantities of interest. As a specific application of our method, we derive an improved dimension truncation error bound for elliptic PDEs with lognormally parameterized diffusion coefficients. Numerical examples support our theoretical findings.