论文标题

插值几何形状和拉伸的DS $ _2 $地平线

Interpolating geometries and the stretched dS$_2$ horizon

论文作者

Anninos, Dionysios, Harris, Eleanor

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We investigate dilaton-gravity models whose solutions contain a large portion of the static patch of dS$_2$. The thermodynamic properties of these theories are considered both in the presence of a finite Dirichlet wall, as well as for asymptotically near-AdS$_2$ boundaries. We show that under certain circumstances such geometries, including those endowed with an asymptotically near-AdS$_2$ boundary, can be locally and even globally thermodynamically stable within particular temperature regimes. First order phase transitions reminiscent of the Hawking-Page transition are discussed. For judiciously chosen models, the near-AdS$_2$ boundary can be viewed as a completion of the stretched cosmological dS$_2$ horizon. We speculate on candidate microphysical models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源