论文标题
通过自动分化的波前传感和重建的联合优化
Joint optimization of wavefront sensing and reconstruction with automatic differentiation
论文作者
论文摘要
高对比度成像仪器需要极端的波前控制才能直接成像系外行星。这需要高度敏感的波前传感器,最佳地利用可用的光子来感知波前。在这里,我们建议使用自动分化来数值优化傅立叶过滤波前传感器。首先,我们优化了波前传感器对不同光圈和波前分布的灵敏度。我们发现,在单色光的假设下,传感器比当前使用的传感器更敏感并接近理论极限。随后,我们通过共同优化感应和重建来直接最大程度地减少残留波前误差。这是通过连接波前传感器和重建器的可区分模型并使用基于梯度的优化器来改进它们来完成的。我们还允许使用卷积神经网络在波前重建中进行非线性,从而扩展了波前传感器的设计空间。我们的结果表明,优化可以导致波前传感器比当前使用的波前传感器提高了性能。所提出的方法是灵活的,可以原则上用于具有免费设计参数的任何波前传感器架构。
High-contrast imaging instruments need extreme wavefront control to directly image exoplanets. This requires highly sensitive wavefront sensors which optimally make use of the available photons to sense the wavefront. Here, we propose to numerically optimize Fourier-filtering wavefront sensors using automatic differentiation. First, we optimize the sensitivity of the wavefront sensor for different apertures and wavefront distributions. We find sensors that are more sensitive than currently used sensors and close to the theoretical limit, under the assumption of monochromatic light. Subsequently, we directly minimize the residual wavefront error by jointly optimizing the sensing and reconstruction. This is done by connecting differentiable models of the wavefront sensor and reconstructor and alternatingly improving them using a gradient-based optimizer. We also allow for nonlinearities in the wavefront reconstruction using Convolutional Neural Networks, which extends the design space of the wavefront sensor. Our results show that optimization can lead to wavefront sensors that have improved performance over currently used wavefront sensors. The proposed approach is flexible, and can in principle be used for any wavefront sensor architecture with free design parameters.