论文标题

graspe:基于图形的多模式融合机器人在非结构化室外环境中导航

GrASPE: Graph based Multimodal Fusion for Robot Navigation in Unstructured Outdoor Environments

论文作者

Weerakoon, Kasun, Sathyamoorthy, Adarsh Jagan, Liang, Jing, Guan, Tianrui, Patel, Utsav, Manocha, Dinesh

论文摘要

我们提出了一种新颖的轨迹遍历性估计和计划在复杂室外环境中机器人导航的算法。我们将RGB摄像头,3D激光雷达和机器人的探针仪传感器中的多模式感觉输入结合在一起,以训练预测模型,以估算候选轨迹的成功概率,该成功概率基于部分可靠的多模式传感器观测。我们使用编码器网络将高维的多模式感觉输入编码为低维特征向量,并将它们表示为连接的图。然后,该图用于训练基于注意力的图形神经网络(GNN)以预测轨迹成功概率。我们进一步分析图像(角)和点云数据(边缘和平面)中的特征数量,以量化其可靠性,以增加我们GNN中使用的特征图表示的权重。在运行时,我们的模型利用多传感器输入来预测本地规划师生成的轨迹的成功概率,以避免潜在的碰撞和故障。当一个或多个传感器模式在复杂的室外环境中不可靠或不可用时,我们的算法证明了强大的预测。我们使用现实世界中户外环境中的点机器人评估算法的导航性能。与最先进的导航方法相比,我们观察到导航成功率增加了10-30%,误报估计的增加了13-15%。

We present a novel trajectory traversability estimation and planning algorithm for robot navigation in complex outdoor environments. We incorporate multimodal sensory inputs from an RGB camera, 3D LiDAR, and the robot's odometry sensor to train a prediction model to estimate candidate trajectories' success probabilities based on partially reliable multi-modal sensor observations. We encode high-dimensional multi-modal sensory inputs to low-dimensional feature vectors using encoder networks and represent them as a connected graph. The graph is then used to train an attention-based Graph Neural Network (GNN) to predict trajectory success probabilities. We further analyze the number of features in the image (corners) and point cloud data (edges and planes) separately to quantify their reliability to augment the weights of the feature graph representation used in our GNN. During runtime, our model utilizes multi-sensor inputs to predict the success probabilities of the trajectories generated by a local planner to avoid potential collisions and failures. Our algorithm demonstrates robust predictions when one or more sensor modalities are unreliable or unavailable in complex outdoor environments. We evaluate our algorithm's navigation performance using a Spot robot in real-world outdoor environments. We observe an increase of 10-30% in terms of navigation success rate and a 13-15% decrease in false positive estimations compared to the state-of-the-art navigation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源