论文标题

INTEN-LOAM:强度和时间增强的激光镜和映射

InTEn-LOAM: Intensity and Temporal Enhanced LiDAR Odometry and Mapping

论文作者

Li, Shuaixin, Tian, Bin, Xiaozhou, Zhu, Jianjun, Gui, Wen, Yao, Li, Guangyun

论文摘要

传统的LIDAR探射仪(LO)系统主要利用从经过的环境获得的几何信息来登记激光扫描并估算LiDAR EGO-MOTION,而在动态或非结构化环境中可能不可靠。本文提出了Inten-loam,一种低饮用和稳健的激光镜和映射方法,该方法完全利用激光扫描的隐式信息(即几何,强度和时间特征)。扫描点被投影到圆柱形图像,这有助于促进各种特征的有效和适应性提取,即地面,梁,立面和反射器。我们提出了一种新型的基于强度的点登记算法,并将其纳入LiDAR探光仪,从而使LO系统能够使用几何和强度特征点共同估算LiDAR EGO运动。为了消除动态对象的干扰,我们提出了一种基于时间的动态对象删除方法,以在MAP更新之前过滤它们。此外,使用与时间相关的体素网格滤清器组织并倒入局部地图,以保持当前扫描和静态局部图之间的相似性。在模拟和实际数据集上进行了广泛的实验。结果表明,在正常驾驶方案中,提出的方法在最先进的情况下达到了相似或更高的精度,并且在非结构化环境中的几何表现都优于几何LO。

Traditional LiDAR odometry (LO) systems mainly leverage geometric information obtained from the traversed surroundings to register laser scans and estimate LiDAR ego-motion, while it may be unreliable in dynamic or unstructured environments. This paper proposes InTEn-LOAM, a low-drift and robust LiDAR odometry and mapping method that fully exploits implicit information of laser sweeps (i.e., geometric, intensity, and temporal characteristics). Scanned points are projected to cylindrical images, which facilitate the efficient and adaptive extraction of various types of features, i.e., ground, beam, facade, and reflector. We propose a novel intensity-based points registration algorithm and incorporate it into the LiDAR odometry, enabling the LO system to jointly estimate the LiDAR ego-motion using both geometric and intensity feature points. To eliminate the interference of dynamic objects, we propose a temporal-based dynamic object removal approach to filter them out before map update. Moreover, the local map is organized and downsampled using a temporal-related voxel grid filter to maintain the similarity between the current scan and the static local map. Extensive experiments are conducted on both simulated and real-world datasets. The results show that the proposed method achieves similar or better accuracy w.r.t the state-of-the-arts in normal driving scenarios and outperforms geometric-based LO in unstructured environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源