论文标题

具有运动链建模的腿部机器人的本体感受性估计

Proprioceptive State Estimation of Legged Robots with Kinematic Chain Modeling

论文作者

Agrawal, Varun, Bertrand, Sylvain, Griffin, Robert, Dellaert, Frank

论文摘要

腿部机器人的运动是一项艰巨的任务,这是由于无数的子问题,例如脚接触的混合动力以及所需步态对地形的影响。对浮动底座和脚关节的准确和高效的状态估计可以通过向机器人控制器提供反馈信息来帮助减轻这些问题的许多问题。当前的状态估计方法高度依赖于视觉和惯性测量的结合,以提供实时估计,因此在感知上较差的环境中残障。在这项工作中,我们表明,通过通过因子图公式利用机器人的运动学链模型,我们可以使用主要具有本体感受的惯性数据对基础和腿关节进行状态估计。我们使用基于因子段的框架中的预先集成IMU测量,向前运动计算和接触检测的结合进行状态估计,从而使我们的状态估计值受到机器人模型的约束。在模拟和硬件上进行的实验结果表明,我们的方法平均超过当前的本体感受状态估计方法27%,而可以推广到各种腿部机器人平台。我们在各种轨迹上进行定量和质量上的结果。

Legged robot locomotion is a challenging task due to a myriad of sub-problems, such as the hybrid dynamics of foot contact and the effects of the desired gait on the terrain. Accurate and efficient state estimation of the floating base and the feet joints can help alleviate much of these issues by providing feedback information to robot controllers. Current state estimation methods are highly reliant on a conjunction of visual and inertial measurements to provide real-time estimates, thus being handicapped in perceptually poor environments. In this work, we show that by leveraging the kinematic chain model of the robot via a factor graph formulation, we can perform state estimation of the base and the leg joints using primarily proprioceptive inertial data. We perform state estimation using a combination of preintegrated IMU measurements, forward kinematic computations, and contact detections in a factor-graph based framework, allowing our state estimate to be constrained by the robot model. Experimental results in simulation and on hardware show that our approach out-performs current proprioceptive state estimation methods by 27% on average, while being generalizable to a variety of legged robot platforms. We demonstrate our results both quantitatively and qualitatively on a wide variety of trajectories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源