论文标题

核心折叠超新星的铁产量

The Iron Yield of Core-collapse Supernovae

论文作者

Rodríguez, Ósmar, Maoz, Dan, Nakar, Ehud

论文摘要

我们进行了对191个剥离的envelope Supernovae(Se sne)的系统分析,目的是从放射性尾巴中的发光度计算出其$^{56} $ ni群众($ M_ \ Mathrm {ni}^\ Mathrm {tail} $),以及最大的光线和/或y $ ni and and and and and and and and and and and and and&ni and and and and and and and and and^$^= 6核心爆发SNE。我们的样本由文献和Zwicky瞬态设施明亮的瞬态调查组成。为了计算光学测定法的发光度,我们使用具有光学和近IR光度法的49 SENNE计算辐射校正,并开发校正以说明未观察到的UV和IR通量。我们发现,用于放射性$^{56} $ ni驱动的瞬变的Khatami和Kasen的方程式不符合观察到的SE SNE的峰值时光度关系。取而代之的是,我们发现$ M_ \ Mathrm {ni}^\ Mathrm {tail} $,高峰时间,峰值光度和下降速率之间的相关性,这允许测量单个$^{56} $ ni Masses的精度为14%。将此方法应用于整个样本,我们发现,对于SNE IIB,IB和IC,平均$^{56} $ ni Masses $ 0.066 \ pm0.006 $,$ 0.082 \ pM0.009 $和$ 0.132 \ $ 0.132 \ pm0.011 \ pm011 \ pm011 \,\,\ Mathrm {m Mathrm {m} _ {$}在考虑了相对费率之后,对于整个SE SNE,我们计算平均$^{56} $ ni和铁产量为$ 0.090 \ pm0.005 $和$ 0.097 \ pm0.007 \,\ Mathrm {m} _ {\ odot} $。将这些结果与最近的II型SN表示$^{56} $ ni质量相结合,由Rodríguez等人衍生而来,核心散发sne(整体上)的平均$^{56} $ NI和铁收益率为$ 0.055 \ pm0.006 $ and $ 0.058 \ pm0.007 \ \ pm0.007 \ \ $}我们还发现,放射性$^{56} $ ni驱动的模型通常低估了SE SNE的峰值光度60-70%,这表明存在额外的电源,导致峰值的发光度。

We present a systematic analysis of 191 stripped-envelope supernovae (SE SNe), aimed to compute their $^{56}$Ni masses from the luminosity in their radioactive tails ($M_\mathrm{Ni}^\mathrm{tail}$) and/or in their maximum light, and the mean $^{56}$Ni and iron yields of SE SNe and core-collapse SNe. Our sample consists of SNe IIb, Ib, and Ic from the literature and from the Zwicky Transient Facility Bright Transient Survey. To calculate luminosities from optical photometry, we compute bolometric corrections using 49 SE SNe with optical and near-IR photometry, and develop corrections to account for the unobserved UV and IR flux. We find that the equation of Khatami & Kasen for radioactive $^{56}$Ni-powered transients with a single free parameter does not fit the observed peak time-luminosity relation of SE SNe. Instead, we find a correlation between $M_\mathrm{Ni}^\mathrm{tail}$, peak time, peak luminosity, and decline rate, which allows measuring individual $^{56}$Ni masses to a precision of 14%. Applying this method to the whole sample, we find, for SNe IIb, Ib, and Ic, mean $^{56}$Ni masses of $0.066\pm0.006$, $0.082\pm0.009$, and $0.132\pm0.011\,\mathrm{M}_{\odot}$, respectively. After accounting for their relative rates, for SE SNe as a whole we compute mean $^{56}$Ni and iron yields of $0.090\pm0.005$ and $0.097\pm0.007\,\mathrm{M}_{\odot}$, respectively. Combining these results with the recent Type II SN mean $^{56}$Ni mass derived by Rodríguez et al., core-collapse SNe, as a whole, have mean $^{56}$Ni and iron yields of $0.055\pm0.006$ and $0.058\pm0.007\,\mathrm{M}_{\odot}$, respectively. We also find that radioactive $^{56}$Ni-powered models typically underestimate the peak luminosity of SE SNe by 60-70%, suggesting the presence of an additional power source contributing to the luminosity at peak.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源