论文标题
优化可扩展全栈量子计算机的资源效率
Optimizing resource efficiencies for scalable full-stack quantum computers
论文作者
论文摘要
在构建可扩展量子计算机的比赛中,最大程度地减少了其全部堆栈的资源消耗以实现目标性能变得至关重要。它授权基本物理和工程的协同作用:前者用于计算性能的微观方面,而后者则是宏观资源消耗。为此,我们提出了一种能够量化和优化全堆栈量子计算机的所有方面的全面方法,以量子量子计算机的所有方面(例如,量子上的噪声),量子信息(例如,计算错误校正和类型的架构)和启用技术(E.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.,这种整体方法使我们能够将资源效率定义为绩效与资源成本之间的比率。作为概念证明,我们使用MNR最大程度地减少全堆栈量子计算机的功耗,执行嘈杂或耐心的计算,并具有目标性能以实现感兴趣的任务。将其与执行相同任务的经典处理器进行比较,我们在与常见的量子计算优势不同的参数方面中确定了量子能量优势。这为构建量子计算机提供了以前被忽视的实际论点。尽管我们的插图使用了具有限制误差校正的超导量子AS启发的高度理想化参数,但该方法是通用的 - 它适用于其他量子和错误校正的代码 - 并为实验者提供了指南来构建能源有效的量子处理器。在某些高能消耗的制度中,它可以通过大小的订单来减少这种消费。总体而言,我们的方法论奠定了资源有效量子技术的理论基础。
In the race to build scalable quantum computers, minimizing the resource consumption of their full stack to achieve a target performance becomes crucial. It mandates a synergy of fundamental physics and engineering: the former for the microscopic aspects of computing performance, and the latter for the macroscopic resource consumption. For this we propose a holistic methodology dubbed Metric-Noise-Resource (MNR) able to quantify and optimize all aspects of the full-stack quantum computer, bringing together concepts from quantum physics (e.g., noise on the qubits), quantum information (e.g., computing architecture and type of error correction), and enabling technologies (e.g., cryogenics, control electronics, and wiring). This holistic approach allows us to define and study resource efficiencies as ratios between performance and resource cost. As a proof of concept, we use MNR to minimize the power consumption of a full-stack quantum computer, performing noisy or fault-tolerant computing with a target performance for the task of interest. Comparing this with a classical processor performing the same task, we identify a quantum energy advantage in regimes of parameters distinct from the commonly considered quantum computational advantage. This provides a previously overlooked practical argument for building quantum computers. While our illustration uses highly idealized parameters inspired by superconducting qubits with concatenated error correction, the methodology is universal -- it applies to other qubits and error-correcting codes -- and provides experimenters with guidelines to build energy-efficient quantum processors. In some regimes of high energy consumption, it can reduce this consumption by orders of magnitudes. Overall, our methodology lays the theoretical foundation for resource-efficient quantum technologies.