论文标题
structnerf:具有结构提示的室内场景的神经辐射场
StructNeRF: Neural Radiance Fields for Indoor Scenes with Structural Hints
论文作者
论文摘要
神经辐射场(NERF)通过密集捕获的输入图像实现了光真实的视图合成。然而,鉴于稀疏的视图,NERF的几何形状极为受到约束,从而导致新观点合成质量的显着降解。受到自我监督的深度估计方法的启发,我们提出了structnerf,这是针对稀疏输入的室内场景的新型视图合成的解决方案。 structnerf利用自然嵌入多视图输入中的结构提示来处理NERF中无约束的几何问题。具体而言,它分别解决了纹理和非纹理区域:提出了基于贴片的多视图一致的光度损失来限制纹理区域的几何形状;对于非纹理的,我们明确地将它们限制为3D一致的平面。通过密集的自我监督深度约束,我们的方法可以改善NERF的几何形状和视图综合性能,而无需对外部数据进行任何其他培训。在几个现实世界数据集上进行的广泛实验表明,结构构成的方法超过了室内场景的最新方法,这些方法具有稀疏输入的定量和定性。
Neural Radiance Fields (NeRF) achieve photo-realistic view synthesis with densely captured input images. However, the geometry of NeRF is extremely under-constrained given sparse views, resulting in significant degradation of novel view synthesis quality. Inspired by self-supervised depth estimation methods, we propose StructNeRF, a solution to novel view synthesis for indoor scenes with sparse inputs. StructNeRF leverages the structural hints naturally embedded in multi-view inputs to handle the unconstrained geometry issue in NeRF. Specifically, it tackles the texture and non-texture regions respectively: a patch-based multi-view consistent photometric loss is proposed to constrain the geometry of textured regions; for non-textured ones, we explicitly restrict them to be 3D consistent planes. Through the dense self-supervised depth constraints, our method improves both the geometry and the view synthesis performance of NeRF without any additional training on external data. Extensive experiments on several real-world datasets demonstrate that StructNeRF surpasses state-of-the-art methods for indoor scenes with sparse inputs both quantitatively and qualitatively.