论文标题
转移学习和视觉变压器基于锂离子电池的健康预测
Transfer Learning and Vision Transformer based State-of-Health prediction of Lithium-Ion Batteries
论文作者
论文摘要
近年来,运输电气化已经取得了重大进展。作为主要的储能设备,锂离子电池(LIB)受到了广泛关注。准确地预测健康状况(SOH)不仅可以减轻用户对电池寿命的焦虑,而且还可以为电池管理提供重要信息。本文提出了一种基于视觉变压器(VIT)模型的SOH的预测方法。首先,预定义电压范围的离散充电数据用作输入数据矩阵。然后,电池的周期特征是由VIT捕获的,可以获得可以获得全局特征,并且通过将周期特征与完整连接(FC)层相结合来获得SOH。同时,引入了转移学习(TL),并根据目标任务电池的早期周期数据进一步微调基于源任务电池训练的预测模型,以提供准确的预测。实验表明,与现有的深度学习方法相比,我们的方法可以获得更好的特征表达,从而可以实现更好的预测效果和传递效果。
In recent years, significant progress has been made in transportation electrification. And lithium-ion batteries (LIB), as the main energy storage devices, have received widespread attention. Accurately predicting the state of health (SOH) can not only ease the anxiety of users about the battery life but also provide important information for the management of the battery. This paper presents a prediction method for SOH based on Vision Transformer (ViT) model. First, discrete charging data of a predefined voltage range is used as an input data matrix. Then, the cycle features of the battery are captured by the ViT which can obtain the global features, and the SOH is obtained by combining the cycle features with the full connection (FC) layer. At the same time, transfer learning (TL) is introduced, and the prediction model based on source task battery training is further fine-tuned according to the early cycle data of the target task battery to provide an accurate prediction. Experiments show that our method can obtain better feature expression compared with existing deep learning methods so that better prediction effect and transfer effect can be achieved.