论文标题

在线延迟意识到工作负载在移动边缘计算中卸载的深度强化学习

Deep Reinforcement Learning for Online Latency Aware Workload Offloading in Mobile Edge Computing

论文作者

Akhavan, Zeinab, Esmaeili, Mona, Badnava, Babak, Yousefi, Mohammad, Sun, Xiang, Devetsikiotis, Michael, Zarkesh-Ha, Payman

论文摘要

由于物联网(IoT)设备的资源约束功能,从IoT设备到附近的移动边缘计算(MEC)服务器将任务卸载不仅可以节省IoT设备的能量,还可以减少执行任务的响应时间。但是,由于MEC服务器的计算资源有限,将任务卸载到最近的MEC服务器可能不是最佳解决方案。因此,共同优化卸载决策和资源管理至关重要,但尚待探讨。在这里,卸载决策是指卸载任务和资源管理的何处意味着将MEC服务器中的计算资源分配给任务多少。通过考虑沟通和计算队列中任务的等待时间(大多数现有作品都忽略了)以及任务的优先级,我们提出了\ ul {d} EEP加强l \ ul {e}基于基于基于的基于基于的de \ ul {c} ision和r \ ul \ ul \ ul {e} courteme \ ul {e} ant ant ant ant ant {优势演员评论家方法可以实时优化每个到达任务的卸载决策和计算资源分配,以便可以最大程度地减少累积加权响应时间。通过不同的实验证明了体面的表现。

Owing to the resource-constrained feature of Internet of Things (IoT) devices, offloading tasks from IoT devices to the nearby mobile edge computing (MEC) servers can not only save the energy of IoT devices but also reduce the response time of executing the tasks. However, offloading a task to the nearest MEC server may not be the optimal solution due to the limited computing resources of the MEC server. Thus, jointly optimizing the offloading decision and resource management is critical, but yet to be explored. Here, offloading decision refers to where to offload a task and resource management implies how much computing resource in an MEC server is allocated to a task. By considering the waiting time of a task in the communication and computing queues (which are ignored by most of the existing works) as well as tasks priorities, we propose the \ul{D}eep reinforcement l\ul{E}arning based offloading de\ul{C}ision and r\ul{E}source manageme\ul{NT} (DECENT) algorithm, which leverages the advantage actor critic method to optimize the offloading decision and computing resource allocation for each arriving task in real-time such that the cumulative weighted response time can be minimized. The performance of DECENT is demonstrated via different experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源