论文标题

递归预测错误梯度算法和框架以在线识别PMSM参数

Recursive Prediction Error Gradient-Based Algorithms and Framework to Identify PMSM Parameters Online

论文作者

Perera, Aravinda, Nilsen, Roy

论文摘要

准确的机器参数的实时获取对于实现电动驱动器的高性能,尤其是针对关键任务应用程序的高性能。与饱和效应不同,温度变化很难预测,因此在线跟踪温度依赖性参数至关重要。在本文中,开发了一个统一的框架,用于在线参数识别旋转电机,前提是递归预测错误方法(RPEM)。其次,采用基于预测的梯度($ \MATHBFψ^t $) - 用于识别温度敏感参数,即,内部永久磁铁同步机器(iPmsm)的永久磁铁通量链接($ψ_m$)和定位磁力抗性($ψ_M$)和定位磁力抗性($ r_s $)。研究了三种算法,即随机梯度(SGA),高斯 - 纽顿(GNA)和物理解释性方法(Phyint)以进行估计增长计算。依赖速度的增益 - 划分方案用于将$ψ_m$和$ r_s $的相互依赖性解除。借助离线仿真方法,分析了RPEM的主要元素,例如$ \Mathbfψ^t $。概念验证和最佳算法的选择是通过使用基于芯片的系统(SOC)嵌入式实时模拟器(ERTS)制成的。随后,所选算法将借助3 kW的IPMSM驱动器验证,在该驱动器中,在基于SOC的工业嵌入式控制系统中实现了控制和估计例程。实验结果表明,总体而言,基于$ \Mathbfψ^t $的RPEM可以是在线和离线适应温度敏感参数的一种多功能技术。

Real-time acquisition of accurate machine parameters is of significance to achieving high performance in electric drives, particularly targeted for mission-critical applications. Unlike the saturation effects, the temperature variations are difficult to predict, thus it is essential to track temperature-dependent parameters online. In this paper, a unified framework is developed for online parameter identification of rotating electric machines, premised on the Recursive Prediction Error Method (RPEM). Secondly, the prediction gradient ($\mathbfΨ^T$)-based RPEM is adopted for identification of the temperature-sensitive parameters, i.e., the permanent magnet flux linkage ($Ψ_m$) and stator-winding resistance ($R_s$) of the Interior Permanent Magnet Synchronous Machine (IPMSM). Three algorithms, namely, Stochastic Gradient (SGA), Gauss-Newton (GNA), and physically interpretative method (PhyInt) are investigated for the estimation gains computation. A speed-dependent gain-scheduling scheme is used to decouple the inter-dependency of $Ψ_m$ and $R_s$. With the aid of offline simulation methods, the main elements of RPEM such as $\mathbfΨ^T$ are analyzed. The concept validation and the choice of the optimal algorithm is made with the use of System-on-Chip (SoC) based Embedded Real-Time Simulator (ERTS). Subsequently, the selected algorithms are validated with the aid of a 3-kW, IPMSM drive where the control and estimation routines are implemented in the SoC-based industrial embedded control system. The experimental results reveal that $\mathbfΨ^T$-based RPEM, in general, can be a versatile technique in temperature-sensitive parameter adaptation both online and offline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源