论文标题

减少的伯格曼内核及其特性

The Reduced Bergman Kernel and its Properties

论文作者

Gehlawat, Sahil, Jain, Aakanksha, Sarkar, Amar Deep

论文摘要

在本文中,我们研究了$ n $ th订单加权减少伯格曼核的一些属性,用于平面域,$ n \ geq 1 $。具体而言,我们查看斋月型定理,加权降低的伯格曼内核及其高阶对应物的定位和边界行为。我们还为这些核在生物形态下提供了转换公式。

In this article, we study some properties of the $n$-th order weighted reduced Bergman kernels for planar domains, $n\geq 1$. Specifically, we look at Ramadanov type theorems, localization, and boundary behaviour of the weighted reduced Bergman kernel and its higher-order counterparts. We also give a transformation formula for these kernels under biholomorphisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源