论文标题

使用计算机视觉的人类胆道诊断的互动自动化

An Interactive Automation for Human Biliary Tree Diagnosis Using Computer Vision

论文作者

AL-Oudat, Mohammad, Alomari, Saleh, Qattous, Hazem, Azzeh, Mohammad, AL-Munaizel, Tariq

论文摘要

胆道是一个管网络,将肝脏与胆囊连接到胆囊,这是一个在其下方的器官。胆管是胆汁树中的主要管。胆管的扩张是人体中更多主要问题的关键指标,例如石头和肿瘤,这些问题通常是由胰腺或vater的乳头状引起的。在许多情况下,胆管扩张的检测对于初学者或未经训练的医务人员来说可能具有挑战性。即使是专业人士也无法用肉眼检测到胆管扩张。这项研究提出了一种基于视觉的独特模型,用于初始诊断。为了从磁共振图像分割胆道树,框架使用了不同的图像处理方法(MRI)。在细分了图像的感兴趣区域后,对其进行了许多计算,以提取10个特征,包括主要轴和次要轴,胆管区域,胆汁树面积,紧凑性和某些纹理特征(对比度,平均值,方差和相关性)。这项研究使用了来自约旦安曼国王侯赛因医学中心的图像数据库,其中包括200张MRI图像,100例正常病例和100例胆管扩张的患者。提取特征后,使用各种分类器来确定患者的健康状况(正常或扩张)。研究结果表明,提取的特征在曲线下的准确性和面积方面与所有分类器的表现都很好。这项研究的独特之处在于,它使用自动方法从MRI图像中分割胆汁树,并且科学地将检索到的特征与胆汁树状态相关联,而文献中从未做过。

The biliary tree is a network of tubes that connects the liver to the gallbladder, an organ right beneath it. The bile duct is the major tube in the biliary tree. The dilatation of a bile duct is a key indicator for more major problems in the human body, such as stones and tumors, which are frequently caused by the pancreas or the papilla of vater. The detection of bile duct dilatation can be challenging for beginner or untrained medical personnel in many circumstances. Even professionals are unable to detect bile duct dilatation with the naked eye. This research presents a unique vision-based model for biliary tree initial diagnosis. To segment the biliary tree from the Magnetic Resonance Image, the framework used different image processing approaches (MRI). After the image's region of interest was segmented, numerous calculations were performed on it to extract 10 features, including major and minor axes, bile duct area, biliary tree area, compactness, and some textural features (contrast, mean, variance and correlation). This study used a database of images from King Hussein Medical Center in Amman, Jordan, which included 200 MRI images, 100 normal cases, and 100 patients with dilated bile ducts. After the characteristics are extracted, various classifiers are used to determine the patients' condition in terms of their health (normal or dilated). The findings demonstrate that the extracted features perform well with all classifiers in terms of accuracy and area under the curve. This study is unique in that it uses an automated approach to segment the biliary tree from MRI images, as well as scientifically correlating retrieved features with biliary tree status that has never been done before in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源