论文标题
PGABB:基于块的图形处理框架,用于异质平台
PGAbB: A Block-Based Graph Processing Framework for Heterogeneous Platforms
论文作者
论文摘要
设计灵活的图形内核可以在各种平台上运行良好,这是一个至关重要的研究问题,因为经常使用图形来建模数据以及最近的体系结构进步和多样性。在这项工作中,我们为现代共享的内存异质性平台提出了一个新颖的图形处理框架PGABB(按块的平行图算法)。我们的框架实现了基于块的编程模型。这允许用户使用在子图上操作的内核表达图形算法。 PGABB支持适合主机DRAM但不适合GPU设备内存的图形计算,并提供简单但有效的调度技术,以将计算安排到异质体系结构中的所有可用资源。我们已经证明,通过开发五种算法,可以轻松地在框架中轻松实现各种图形算法。我们的实验结果表明,与手工优化的实现相比,PGABB实施取得更好或更具竞争力的绩效。根据我们对五种图算法和四十四个图的实验,在中位数中,PGABB在1.6、1.6、5.7、3.4、4.5和2.4倍的性能中的性能要比GAPBS,Galois,Ligra,Ligra,Lagraph Galois-GPU和GunRock Grock Grapk Graph Processing系统好。
Designing flexible graph kernels that can run well on various platforms is a crucial research problem due to the frequent usage of graphs for modeling data and recent architectural advances and variety. In this work, we propose a novel graph processing framework, PGAbB (Parallel Graph Algorithms by Blocks), for modern shared-memory heterogeneous platforms. Our framework implements a block-based programming model. This allows a user to express a graph algorithm using kernels that operate on subgraphs. PGAbB support graph computations that fit in host DRAM but not in GPU device memory, and provides simple but effective scheduling techniques to schedule computations to all available resources in a heterogeneous architecture. We have demonstrated that one can easily implement a diverse set of graph algorithms in our framework by developing five algorithms. Our experimental results show that PGAbB implementations achieve better or competitive performance compared to hand-optimized implementations. Based on our experiments on five graph algorithms and forty-four graphs, in the median, PGAbB achieves 1.6, 1.6, 5.7, 3.4, 4.5, and 2.4 times better performance than GAPBS, Galois, Ligra, LAGraph Galois-GPU, and Gunrock graph processing systems, respectively.