论文标题
使用神经网络和可区分模拟从加速器束测量进行的相空间重建
Phase Space Reconstruction from Accelerator Beam Measurements Using Neural Networks and Differentiable Simulations
论文作者
论文摘要
表征加速器中粒子梁的相空间分布是加速器理解和性能优化的中心部分。但是,传统的基于重建的技术要么使用简化的假设,要么需要专门的诊断来推断高维($> $ 2D)的梁特性。在这封信中,我们引入了一种通用算法,该算法将神经网络与可区分的粒子跟踪结合在一起,以有效地重建高维相空间分布,而无需使用专门的光束诊断或光束操纵。我们证明,使用单个聚焦四极杆和诊断屏幕,在模拟和实验中,在模拟和实验中,精确地重建具有相应置信区间的详细的4D相空间分布。该技术允许同时测量多个相关相位空间,这将在将来实现简化的6D相空间分布重建。
Characterizing the phase space distribution of particle beams in accelerators is a central part of accelerator understanding and performance optimization. However, conventional reconstruction-based techniques either use simplifying assumptions or require specialized diagnostics to infer high-dimensional ($>$ 2D) beam properties. In this Letter, we introduce a general-purpose algorithm that combines neural networks with differentiable particle tracking to efficiently reconstruct high-dimensional phase space distributions without using specialized beam diagnostics or beam manipulations. We demonstrate that our algorithm accurately reconstructs detailed 4D phase space distributions with corresponding confidence intervals in both simulation and experiment using a single focusing quadrupole and diagnostic screen. This technique allows for the measurement of multiple correlated phase spaces simultaneously, which will enable simplified 6D phase space distribution reconstructions in the future.