论文标题
检测晶格QCD中Lee-Yang Edge奇点的关键点
Detecting critical points from Lee-Yang edge singularities in lattice QCD
论文作者
论文摘要
提出了一种新的方法来探索复杂化学势平面中晶格QCD的奇异性结构。我们的方法可以看作是泰勒扩展和分析延续方法的组合。它的新颖性在于使用理性(Padé)近似值来研究Lee-Yang Edge奇异性。我们介绍了净 - 巴里昂数字的累积物的计算,这是纯粹想象中的巴里昂数量化学电位的函数,在颞晶格范围$n_τ= 4,6 $的情况下获得了高度改进的交错夸克。我们构建了晶格数据的各种有理函数近似值,并确定它们在复杂平面中的极(和根)。我们将最接近极点的位置与Lee-Yang边缘奇异性的理论上预期位置进行比较。在高温下,我们发现缩放与Roberge-Weiss过渡的预期功率定律行为一致,而对于$ t \ Lessim 170 $ MEV则发现了不同的行为。
A new approach is presented to explore the singularity structure of lattice QCD in the complex chemical potential plane. Our method can be seen as a combination of the Taylor expansion and analytic continuation approaches. Its novelty lies in using rational (Padé) approximants for studying Lee-Yang edge singularities. We present a calculation of the cumulants of the net-baryon number as a function of a purely imaginary baryon number chemical potential, obtained with highly improved staggered quarks at temporal lattice extent of $N_τ=4,6$. We construct various rational function approximations of the lattice data and determine their poles (and roots) in the complex plane. We compare the position of the closest pole to the theoretically expected position of the Lee-Yang edge singularity. At high temperature, we find scaling that is in accordance with the expected power law behavior of the Roberge-Weiss transition while a different behavior is found for $T\lesssim 170$ MeV.