论文标题

最佳泡泡骑行:一款具有不同入门时间的平均野外游戏

Optimal Bubble Riding: A Mean Field Game with Varying Entry Times

论文作者

Tangpi, Ludovic, Wang, Shichun

论文摘要

最近的财务泡沫,例如加密货币的出现和“模因股票”,零售和机构投资者都受到了越来越多的关注。在本文中,我们提出了一个游戏理论模型,以在资产气泡的存在下进行最佳清算。我们的设置使参与者的涌入能够推动资产的价格。此外,交易者将在可能不同的时间进入市场,并利用不可避免的崩溃的风险上升趋势。特别是,我们考虑了两种类型的崩溃:一种内源性爆发,是由于销售过多而导致的,而外源性爆发是无法预料的,​​并且与交易者的行为无关。 资产气泡的普及表明了一个大型人口设置,这自然会导致平均野外游戏(MFG)配方。我们介绍了一类MFG,其中有不同的入学时间。特别是,平衡将取决于条件最佳策略的入门加权平均值。为了结合外源性爆发时间,我们采用了过滤的进行性扩大的方法。我们在广义设置中使用弱公式证明了MFG平衡的存在,我们表明平衡策略可以分解为前后阶段,每个部分仅包含市场信息。我们还对解决方案进行了数值模拟,这使我们能够就气泡爆发与平衡策略之间的关系提供一些有趣的结果。

Recent financial bubbles such as the emergence of cryptocurrencies and "meme stocks" have gained increasing attention from both retail and institutional investors. In this paper, we propose a game-theoretic model on optimal liquidation in the presence of an asset bubble. Our setup allows the influx of players to fuel the price of the asset. Moreover, traders will enter the market at possibly different times and take advantage of the uptrend at the risk of an inevitable crash. In particular, we consider two types of crashes: an endogenous burst which results from excessive selling, and an exogenous burst which cannot be anticipated and is independent from the actions of the traders. The popularity of asset bubbles suggests a large-population setting, which naturally leads to a mean field game (MFG) formulation. We introduce a class of MFGs with varying entry times. In particular, an equilibrium will depend on the entry-weighted average of conditional optimal strategies. To incorporate the exogenous burst time, we adopt the method of progressive enlargement of filtrations. We prove existence of MFG equilibria using the weak formulation in a generalized setup, and we show that the equilibrium strategy can be decomposed into before-and-after-burst segments, each part containing only the market information. We also perform numerical simulations of the solution, which allow us to provide some intriguing results on the relationship between the bubble burst and equilibrium strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源