论文标题

图形辫子组的分组分解图

Graph of groups decompositions of graph braid groups

论文作者

Berlyne, Daniel

论文摘要

我们提供了一个明确的结构,该结构使人们可以轻松地将图形编织组作为组图分解。这使我们能够计算各种图形的辫子组,并为图形编织组提供两个通用标准,以将其分为非平凡的免费产品,回答了Genevois的两个问题。我们还使用它来区分某些右角的Artin组和图形编织组。此外,我们提供了一个相对双曲线的图形编织组的明确示例,但相对于适当的子图的编织组而言不是双曲线。这回答了Genevois的另一个问题。

We provide an explicit construction that allows one to easily decompose a graph braid group as a graph of groups. This allows us to compute the braid groups of a wide range of graphs, as well as providing two general criteria for a graph braid group to split as a non-trivial free product, answering two questions of Genevois. We also use this to distinguish certain right-angled Artin groups and graph braid groups. Additionally, we provide an explicit example of a graph braid group that is relatively hyperbolic, but is not hyperbolic relative to braid groups of proper subgraphs. This answers another question of Genevois in the negative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源