论文标题
乔丹·普通(Jordan Constant
Jordan constant for Cremona group of rank 2 over a finite field
论文作者
论文摘要
在本文中,我们找到了约旦常数的确切值,即Cremona Group的排名$ 2 $比所有有限领域的确切值。在证明期间,我们在$ \ mathbb {f} _2 $上构建一个立方体表面,并定期采取$ \ mathrm {s} _6 $的定期操作,这是$ \ mathbb {f} _2 _2 _2 _2的最大立方表面的最大自动形态群。
In this paper we find the exact value of the Jordan constant for Cremona group of rank $2$ over all finite fields. During the proof we construct a cubic surface over $\mathbb{F}_2$ with a regular action of the group $\mathrm{S}_6$ which is the maximal automorphism group of cubic surfaces over $\mathbb{F}_2.$ Moreover, we prove the uniqueness up to isomorphism of such a cubic surface.