论文标题
朝着对视觉概念的语义相似性的语言模型进行解释评估
Towards explainable evaluation of language models on the semantic similarity of visual concepts
论文作者
论文摘要
NLP研究的最新突破,例如变压器模型的出现,无疑促进了多项任务的重大进步。但是,很少有研究其评估策略的鲁棒性和解释性问题。在这项工作中,我们研究了高性能预训练的语言模型的行为,重点是视觉词汇的语义相似性。首先,我们满足了对可解释的评估指标的需求,这是理解检索实例的概念质量所必需的。我们拟议的指标在本地和全球层面提供了宝贵的见解,展示了广泛使用方法的不可能。其次,对显着查询语义的对抗性干预措施暴露了不透明指标的脆弱性,并突出了学习的语言表示中的模式。
Recent breakthroughs in NLP research, such as the advent of Transformer models have indisputably contributed to major advancements in several tasks. However, few works research robustness and explainability issues of their evaluation strategies. In this work, we examine the behavior of high-performing pre-trained language models, focusing on the task of semantic similarity for visual vocabularies. First, we address the need for explainable evaluation metrics, necessary for understanding the conceptual quality of retrieved instances. Our proposed metrics provide valuable insights in local and global level, showcasing the inabilities of widely used approaches. Secondly, adversarial interventions on salient query semantics expose vulnerabilities of opaque metrics and highlight patterns in learned linguistic representations.