论文标题
磁效应促进富含金属的原子冷却晕中的超质量恒星形成
Magnetic Effects Promote Supermassive Star Formation in Metal-enriched Atomic-cooling Halos
论文作者
论文摘要
中间质量黑洞(带有$ \ geq \!10^5 \,m_ \ odot $)是在早期宇宙中的超级质量黑洞(带有$ \ sim \!10^9 \,m_ \ odot $)的有前途的候选人(Redshift $ z \ sim6 $)。 Chon&Omukai(2020)首先指出了富含金属的原子冷却晕(ACHS)的直接塌陷黑洞(DCBH)形成,该晕片(ACHS)放宽了DCBH地层标准。另一方面,Hirano等人。 (2021)表明,磁效应促进了无金属ACH中的DCBH形成。我们执行一组磁流失动力学模拟,以使用金属化的磁化ACHS中的恒星形成$ z/z_ \ odot = 0 $,$ 10^{ - 5} $,$ 10^{ - 4} $。我们的模拟表明,在富含金属的ACH的金属ACH中,质量吸积率变得低于金属的ACH。但是,许多原恒星由重力和热不稳定的金属富集气云形成。在这种情况下,磁场随着磁场线的旋转而迅速增加。具有放大磁场的区域由于原恒星的轨道运动和积聚气体的旋转而向外扩展。放大的磁场从积聚气体中提取角动量,促进低质量原始恒定体的合并,并增加一级原恒星的质量生长速度。我们得出的结论是,无论初始磁场强度如何,磁场扩增始终在富含金属的ACH中实现,这会影响DCBH形成标准。此外,我们发现与以前的未磁模拟的质量不同,因为对于$ z/z_ \ odot = 10^{ - 5} $,质量增长率是最大的质量增长率。
Intermediate-mass black holes (with $\geq\!10^5\,M_\odot$) are promising candidates for the origin of supermassive black holes (with $\sim\!10^9\,M_\odot$) in the early universe (redshift $z\sim6$). Chon & Omukai (2020) firstly pointed out the direct collapse black hole (DCBH) formation in metal-enriched atomic-cooling halos (ACHs), which relaxes the DCBH formation criterion. On the other hand, Hirano et al. (2021) showed that the magnetic effects promote the DCBH formation in metal-free ACHs. We perform a set of magnetohydrodynamical simulations to investigate star formation in the magnetized ACHs with metallicities $Z/Z_\odot = 0$, $10^{-5}$, and $10^{-4}$. Our simulations show that the mass accretion rate onto the protostars becomes lower in metal-enriched ACHs than that of metal-free ACHs. However, many protostars form from gravitationally and thermally unstable metal-enriched gas clouds. Under such circumstances, the magnetic field rapidly increases as the magnetic field lines wind up due to the spin of protostars. The region with the amplified magnetic field expands outwards due to the orbital motion of protostars and the rotation of the accreting gas. The amplified magnetic field extracts the angular momentum from the accreting gas, promotes the coalescence of the low-mass protostars, and increases the mass growth rate of the primary protostar. We conclude that the magnetic field amplification is always realized in the metal-enriched ACHs regardless of the initial magnetic field strength, which affects the DCBH formation criterion. In addition, we find a qualitatively different trend from the previous unmagnetized simulations in that the mass growth rate is maximal for the extremely metal-poor ACHs with $Z/Z_\odot = 10^{-5}$.