论文标题
来自冷冻奇点的新的超对称弦模模量空间
New Supersymmetric String Moduli Spaces from Frozen Singularities
论文作者
论文摘要
$ \ Mathcal {n} = 1 $八维和七个维度的字符串理论的当前分类完全由具有F理论或M理论冷冻奇异性的K3表面捕获。在本说明中,我们表明,冻结具有相同ADE类型的某些奇异性集合的不等方式,因此模量空间中的连接组件比以前想象的要多。也就是说,在八个维度中又有一个,在七个维度中又有三个。我们认为,八个维度中的新组件与九个维度的字符串理论分解,而等级为1量规组,这是迄今为止未知的。构造和研究与这些模量空间相对应的弦描述是伴侣论文的主题。
The current classification of $\mathcal{N} = 1$ string theories in eight and seven dimensions is completely captured by K3 surfaces with F-Theory or M-Theory frozen singularities. In this note we show that there are inequivalent ways of freezing certain collections of singularities which have the same ADE type, and so there are more connected components in the moduli space than previously thought; namely, one more in eight dimensions and three more in seven dimensions. We argue that the new component in eight dimensions decompactifies to a string theory in nine dimensions with rank 1 gauge group, which has been so far unidentified. Constructing and studying the stringy descriptions corresponding to these moduli spaces is the subject of a companion paper.