论文标题

在多维空间中的麦克斯韦电动力学上

On Maxwell electrodynamics in multi-dimensional spaces

论文作者

Frolov, Alexei M.

论文摘要

多维空间中麦克斯韦电动力学的控制方程是从最小作用的变异原理得出的,该原理应用于电磁场的作用函数。在多维伪欧亚人(平坦)空间中,Hamiltonian用于电磁场的方法也已开发和研究。基于两个出现的一流约束,我们已将其推广到多维空间,许多以三维电磁场已知的不同量表。对于非零曲率的多维空间,多维电磁场的管理方程式以显着的协变形式编写。在存在电磁场的情况下,多维的爱因斯坦的度量重力方程已以真实的张量形式重新编写。标量电动力学的方法用于分析二维和一维空间中的麦克斯韦方程。

The governing equations of Maxwell electrodynamics in multi-dimensional spaces are derived from the variational principle of least action which is applied to the action function of the electromagnetic field. The Hamiltonian approach for the electromagnetic field in multi-dimensional pseudo-Euclidean (flat) spaces has also been developed and investigated. Based on the two arising first-class constraints we have generalized to multi-dimensional spaces a number of different gauges known for the three-dimensional electromagnetic field. For multi-dimensional spaces of non-zero curvature the governing equations for the multi-dimensional electromagnetic field are written in manifestly covariant form. Multi-dimensional Einstein's equations of metric gravity in the presence of electromagnetic field have been re-written in the true tensor form. Methods of scalar electrodynamics are applied to analyze Maxwell equations in the two- and one-dimensional spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源