论文标题

在某个地方的图表中计数子图

Counting Subgraphs in Somewhere Dense Graphs

论文作者

Bressan, Marco, Goldberg, Leslie Ann, Meeks, Kitty, Roth, Marc

论文摘要

我们研究了大型主机图$ g $中计数副本和诱发副本的问题。最近的工作根据对模式的结构限制$ h $对这些问题的复杂性进行了全面分类。在这项工作中,我们解决了分析限制模式和受限制宿主的复杂性的更具挑战性的任务。具体而言,我们询问哪些允许模式和主机的家庭意味着固定参数障碍性,即,在时间$ f(h)\ cdot \ cdot | g |^{o(1)} $中存在算法,用于某些可计算功能$ f $。我们的主要结果呈现出满足自然封闭特性的家庭的详尽和明确的复杂性分类。除其他外,我们将计算小匹配和独立集中的问题的问题确定为我们的研究中心对象,并确定以下清晰的二分法作为指数时间假设的后果:(1)$ k $ - 在\ mathcal in \ mathcal in \ mathcal中计数$ k $的情况下, $ \ MATHCAL {G} $无处密集。 (2)在\ Mathcal {g} $中计数$ k $独立的集合$ g \ in \ mathcal {g} $是固定的参数时,并且仅当$ \ mathcal {g} $都无处浓密时。此外,如果$ \ Mathcal {g} $在某个地方密集,即不是无处浓密的地方,我们就会获得几乎紧密的条件下限。我们分类的这些基本案例包括在匹配和独立的设置问题上进行的各种以前的结果,例如在$ k $中计数$ k $ - 在二手图中(curticapean,Marx,focs; focs; focs; focs; focs; focs; focs; focs; focs; focs; focs; focs; fips; focs; focs; focs; focs; roth; soda; soda; soda; soda; soda; soda; soda; soda; soda; soda; soda; soda; soda; soda;两分图(Curticapean等人;算法19)。

We study the problems of counting copies and induced copies of a small pattern graph $H$ in a large host graph $G$. Recent work fully classified the complexity of those problems according to structural restrictions on the patterns $H$. In this work, we address the more challenging task of analysing the complexity for restricted patterns and restricted hosts. Specifically we ask which families of allowed patterns and hosts imply fixed-parameter tractability, i.e., the existence of an algorithm running in time $f(H)\cdot |G|^{O(1)}$ for some computable function $f$. Our main results present exhaustive and explicit complexity classifications for families that satisfy natural closure properties. Among others, we identify the problems of counting small matchings and independent sets in subgraph-closed graph classes $\mathcal{G}$ as our central objects of study and establish the following crisp dichotomies as consequences of the Exponential Time Hypothesis: (1) Counting $k$-matchings in a graph $G\in\mathcal{G}$ is fixed-parameter tractable if and only if $\mathcal{G}$ is nowhere dense. (2) Counting $k$-independent sets in a graph $G\in\mathcal{G}$ is fixed-parameter tractable if and only if $\mathcal{G}$ is nowhere dense. Moreover, we obtain almost tight conditional lower bounds if $\mathcal{G}$ is somewhere dense, i.e., not nowhere dense. These base cases of our classifications subsume a wide variety of previous results on the matching and independent set problem, such as counting $k$-matchings in bipartite graphs (Curticapean, Marx; FOCS 14), in $F$-colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate graphs (Bressan, Roth; FOCS 21), as well as counting $k$-independent sets in bipartite graphs (Curticapean et al.; Algorithmica 19).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源